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CCHHAAPPTTEERR--11  
THEORY OF PROBABILITY AND BAYE’S THEOREM 

Structure 

1.1 Introduction 
1.2 Basic Concepts 
1.3 Mathematical Probability 

1.3.1 Mathematical Probability 
1.3.2 Statistical Probability 
1.3.3 Axiomatic Approach of Probability 

1.4 Calculation of Probability of an Event 
1.5 Some Theorems on Probability 
1.6 Boole’s Inequality 
1.7 Conditional Probability 
1.8 Multiplication Theorem of Probability  
1.9 Independent Events 
1.10 Pairwise Independent Events 
1.11 Mutually Independent Events  
1.12 Law of Total Probability 
1.13 Baye’s Theorem 

1.1 Introduction 

In real life, there is no certainty about many problems that what will happen in the future but decisions 
still have to be taken. Therefore, decision processes must be able to deal with the problems of 
uncertainty. Uncertainty creates risk and this risk must be analyzed. Both qualitative and quantitative 
techniques exist for modeling uncertainty. In many situations, large amounts of numerical data are 
available which requires statistical techniques for analysis. If an experiment is repeated under essentially 
homogeneous and similar conditions, we generally come across two types of situations. 

(1) The result or what is usually known as the ‘outcome’ is unique or certain. 

(2) The result is not unique but may be one of the several possible outcomes. 

The phenomena covered by (1) are known as ‘deterministic’ or ‘predictable’ phenomena in which the 
result is predicted with certainty.  

 For Example:  

(a) The velocity ‘v’ of a particle after time‘t’ is given by v=u+at where ‘u’ is initial velocity and 
‘a’ is the acceleration. The equation uniquely determines v if the right-hand side quantities are 
known. 
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(b) Ohm’s Law, i.e. C=E/R , where ‘C’ is the flow of current, ’E’ the potential difference 
between the two ends of the conductor and ‘R’ the resistance, uniquely determines the value C as 
soon as E and R are given. 

  Similarly, 

The phenomena covered by (2) are known as ‘unpredictable’ or ‘probabilistic’ phenomena in which the 
result is predicated with uncertainty.  

For Example: 

(c) In a random toss of a uniform coin, we are not sure of getting the head or tail. 

(d) A manufacturer cannot ascertain the future demand of his product with certainty. 

Remark: In ‘Theory of probability’ there are three possible states of expectation-‘certainty’, 
‘impossible’, and ’uncertainty’. The probability theory describes certainty by 1, impossibility by 0 and 
the various grades of uncertainties by coefficients ranging between 0 and 1. 

From above discussion, it is clear that we need to cope with the uncertainty which leads to the study and 
use of probability theory. Galileo (1564-1642), an Italian Mathematician, was the first to attempt at a 
qualitative measure of probability when he was dealing with the gambling. But, the first foundation of 
mathematical theory of probability proposed by two French mathematicians B. Pascal (1623-62) and P. 
Fermat (1601-65) while solving the problems proposed by French gambler. Afterward, important 
contributions were made by various researchers including Huyghens (1629-95), Jacob Bernoulli (1654-
1705), Laplace (1749-1827), Abraham De-Moivre (1667-1754), Markov (1856-1922), and Thomas 
Bayes. 

  1.2 Basic Concepts 

 1. Random Experiment 

An experiment is said to be a random experiment if it is conducted repeatedly under essentially 
homogeneous conditions, the result is not unique but may be anyone of the various possible outcomes. 
In other words, an experiment whose outcomes cannot be predicted in advance is called a random 
experiment. For instance, if a fair coin is tossed three times, it is possible to enumerate all the possible 
eight sequences of head (H) and tail (T). But it is not possible to predict which sequence will occur at 
any time. 

 2. Sample Space 

The set of all possible outcomes of a random experiment is known as the sample space and is denoted by 
S. Each conceivable outcome of a random experiment under consideration is called a sample point. The 
totality of all conceivable sample points is called a sample space. For example: Sample space of a trial 
conducted by tossing of two coins is {HH, HT, TH, TT}. In the above experiment, it is simple to note 
that anyone sequence of H and/or T is a sample point whereas all the possible four sample points 
constitute the sample space. 
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3. Trial and Events 

Any particular performance of a random experiment is called a trial and outcome or combinations of 
outcomes are termed as Events or Cases. Any subset of the sample space is an event. In other words, the 
set of sample points that satisfy certain requirement(s) is called an event. For example, if a coin is tossed 
repeatedly, the result is not unique. The tossing of coin is a random experiment and getting a head or tail 
is an event. 

For example: In an experiment which consists of the throw of a six-faced dice and observing the number 
of points that appear, the possible outcomes are 1,2,3,4,5,6. 

In the same experiment, the possible events could also be stated as‘odd number of points’, ‘Even no. of 
points‘, ‘Getting a point greater than 4‘and so on. 

4. Exhaustive Events 

It is defined as total number of all possible outcomes of any trial. In other words, if all the possible 
outcomes of an experiment are taken into consideration, then such events are called exhaustive events 
e.g. when a coin is tossed three times there are eight exhaustive events, when two dice are thrown then 
exhaustive events are 36 and drawing two cards from a pack of cards, the exhaustive number of cases is 
52

2C . 

5. Favourable Events 

The number of cases favourable to an event in a trial is the number of outcomes which entail the 
happening of the event. 

For Examples: 
(i)In throwing two dice, the number of cases favourable to getting the sum 5 is (1,4),(4,1),(2,3), (3,2). 

(ii)In drawing a card from a pack of cards the number of cases favourable to drawing of an ace is 4, for 
drawing a spade is 13, and for drawing a red card is 26. 

6. Mutually Exclusive Events 

Two or more events are said to be mutually exclusive if the happening of one of them prevents or 
precludes the happening of all others in the same experiment. Two events E1 and E2 are said to be 
mutually exclusive when they cannot happen simultaneously in a single trial. In other words, if there is 

no sample point in E1 which is common to the sample point in E2 i.e., 1 2E E = , the events E1 and E2 
are said to be mutually exclusive. In throwing a die, the events 1, 2, 3, 4, 5 and 6 are mutually exclusive 
because all the six events cannot happen simultaneously in a single trial. If it shows 3, then the event of 
getting 3 precludes the event of getting 1, 2, 4, 5, and 6 at the same time. 

7. Equally Likely Events 

The events are said to be equally likely if the chance of happening of each event is equal or same. In 
other words, cases are said to be equally likely when one does not occur more often than the others e.g. 
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if a die is rolled, any face is as likely to come up as any other face. Hence, the six outcomes 1, 2, 3, 4, 5 
or 6 appearing up are equally likely.  

8. Independent Events 

Events are said to be independent of each other if happening of any one of them is not affected by and 
does not affect the happening of any one of others. In other words, two or more events are said to be 
independent if the happening (or non-happening) of anyone does not depend on the happening or non-
happening of any other, otherwise, they are said to be dependent. For example 

a)In tossing an unbiased coin, the event of getting a head in the first toss is independent of getting a head 
in the second, third and subsequent throws. 

b) If we draw a card from a pack of well-shuffled cards and replace it before drawing the second draw, 
then the second draw is independent of the first draw, but if the first card is not replaced then the second 
draw is dependent on the first draw. 

9. Complementary Events 

The complement of an event A, means non-occurrence of an event A and is denoted by Ā or Ac. Ac/Ā 
contains those points of the sample space which do not belong to A. In tossing a coin, occurrence of 
Head (H) and Tail (T) are complementary events. In tossing of a die, occurrence of an even number (2, 
4, 6) and odd number (1, 3, 5) are complementary events. 

10. Simple (Elementary) Events 

An event contains only a single sample point is called an elementary event or simple event e.g. in 
tossing a die, getting a number 5 is called a simple event. 

11. Compound Events 

When two or more events occur in connection with each other, their simultaneous occurrence is called a 
compound event. The joint occurrence of two or more events is called a compound event. An event is 
termed compound if it represents two or more simple events e.g. if a bag contains 4 white and 3 black 
balls. If we are required to find a chance in which 3 balls drawn are all white is a simple event. 
However, if we are required to find out the chance of drawing 3 white and then 2 black balls, we are 
dealing with a compound event because it is made up of two events. 

1.3 Mathematical Probability 

Definition of Probability: The chance of happening of an event when expressed quantitatively is called 
probability. The probability is defined in the following three different ways: 

1. Classical, Mathematical or a Priori. 
2. Empirical, Relative or Statistical  
3. Axiomatic  

1.3.1 Mathematical (or Classical or Prior) Probability 

This is the oldest and simplest definition of probability. This definition is based on the assumption that 
the outcomes or results of an experiment are equally likely and mutually exclusive. According to James 
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Bernoulli who was the first man to obtain a quantitative measure of uncertainty. If a random experiment 
results in N exhaustive, mutually exclusive and equally likely cases out of which m are favourable to 
the happening of an event A, then probability of occurrence of A, usually denoted by P(A) is given by 

number of favourable cases( )
number of Exhaustive cases

mP A
N

    

Example 1: Two identical symmetric dice are thrown. Find the probability of obtaining a total score of 
8. 

Solution: The total number of possible outcomes is 66=36. There are 5 sample points (2, 6), (3, 5) (4, 
4), (5, 3), (6, 2), which are favourable to the event A of getting a total score of 8. Hence, the required 
probability is 5/36. 

Properties: 

1. The number of cases favourable to the complimentary event A , i.e. non-happening of event A are 
(N-m) and by definition of probability of non-occurrence of A is given by: 

favourable number of cases A( ) 1 1 ( )
Exhaustive  number of cases

N m mP A P A
N N


       

( ) ( ) 1P A P A   

2. Since m and N are non-negative integers, P(A)≥0. Further, since the favourable number of cases to 
A are always less than total number of cases N, i.e. m ≤ N, we have P (A) ≤1. Hence, the probability 
of any event is a number lying between 0 and 1 i.e., 0≤ P (A) ≤1. If P(A)=0 then this event is said to 
be impossible event. If P (A) =1, then A is called a certain event. 

The above definition of probability is widely used, but it cannot be applied under the following 
situations: 

i. If it is not possible to enumerate all the possible outcomes for an experiment. 

ii. If the sample points (outcomes) are not mutually independent. 

iii. If the total number of outcomes is infinite. 

iv. If each and every outcome is not equally likely. 

It is clear that the above drawbacks of a classical approach restrict its use in practical problems. Yet this 
is still widely used for problems concerning the tossing of coin(s), throwing of die, game of cards and 
selection of balls of different colours from the bag etc. 

The probability by classical approach cannot be discovered in the cases where situations like an electric 
bulb will fuse before it is used for 100 hours, a patient will die if operated for an ailment, a student will 
fail in a particular examination, a rail compartment in which you are traveling will catch fire, or a fan 
will fall on you while sitting under fan etc., under such circumstances another definition can be used. 
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1.3.2 Statistical (Empirical) Probability 

If an experiment is performed repeatedly under essentially homogeneous and identical conditions, then 
the limiting value of the ratio of the number of times the event occurs to the number of trials, as the 
number of trials becomes indefinitely large, is called the probability of happening of the event, assuming 
that the limit is finite and unique. Let an event A occurs m times in N repetitions of a random 
experiment. Then the ratio m/N gives the relative frequency of the event A. When N becomes 
sufficiently large, it is called the probability of A. 

( ) lim
N

mP A
N

   

The above definition of probability involves a concept which has long term consequences. This 
approach was initiated by Von Mises. Moreover, N is not equal to infinity. Thus, in this case, the 
probability is the limit of relative frequency. Whether such a limit always exists, is not definite.  

Limitations of Empirical probability: 

1. If an experiment is repeated a large number of times, the experiment conditions may not remain 
identical and homogeneous. 

2. The limit in equation (1) may not attain a unique value, however, large N may be. 

The two definitions of probability are apparently different. In the prior definition, it is the relative 
frequency of favourable cases to the total number of cases. In the relative frequency approach, the 
probability is obtained objectively by repetitive empirical observations, hence it is known as empirical 
probability. The empirical definition provides validity to the classical theory of probability. 

1.3.3 Axiomatic Approach of Probability 

The modern theory of probability is based on the axiomatic approach introduced by the Russian 
Mathematician A.N. Kolmogorov in 1930. The axiomatic definition of probability includes both the 
classical and empirical definition of probability and at the same time is free from their drawbacks. It is 
based on certain properties or postulates, commonly known as axiom. It is defined as given a sample 
space of a random experiment, the probability of the occurrence of any event A is defined as asset 
function P(A) satisfying the following axioms: 

(a) P (A) is defined, is real and non-negative i.e. P (A) > 0. 

(b) The probability of entire sample space is one i.e. P(S) = 1. 

(c) If A1, A2, ..., An are mutually exclusive events, then the probability of the occurrence of either A1or 
A2, ...or An denoted by P(A1 ∪ A2 ∪ ...∪ An) = P(A1)+P(A2)+...+P( An) . 

The above axioms are known as axioms of positiveness, certainty and unity respectively. 

Probability in this approach is defined as, let S be the sample space of a random experiment with a large 
number of sample points N i.e. n(S) =N and the number of occurrences (sample points) favourable to the 
event A be denoted by n(A). Then the probability of an event A is equal to 
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( ) ( )( )
( )

n A n AP A
n S N

   

1.4 Calculation of Probability of an Event 

The probability of an event can be calculated by the following methods: 

Method I: Find the total number of exhaustive cases (N). Thereafter, obtain the number of favourable 
cases to the event say m. Divide the number of favourable cases by the total number of equally likely 
cases. This will give the probability of an event. The following example will illustrate this. 

Example 2. Two dice are tossed. Find the probability that the sum of dots on the faces that turn up is 11. 

Solution: When two dice are tossed total number of possible outcomes =36 

The number of outcomes to get a sum of 11 are (6, 5) and (5, 6) i.e. the number of cases favourable to 

this event is equal to 2. Hence, probability of getting a sum of 11 when two dice are thrown = 2
36

. 

Example 3: What is the chance that a leap year selected randomly will contain 53 Sunday? 

Solution: In a leap year (which consists of 366 days), there are52 complete weeks and 2 days over.The 
possible combinations for their two ‘over’ days: 

1. Sunday and Monday  

2. Monday and Tuesday 

3. Tuesday and Wednesday 

4. Wednesday and Thursday 

5. Thursday and Friday 

6. Friday and Saturday 

7. Saturday and Sunday. 

In order that a leap year selected at random should contain 53 Sunday, one of the two ‘over’ days 
must be Sunday. Since out of the above 7 possibilities, 2, viz., (1) and (7) are favourable to this 
event. 

Required probability = 2/7. 

Example 4: Among the digits 1, 2,3,4,5 at first one is chosen and then a second selection is made 
among the remaining four digits, find the probability that an odd digit will be selected 

  1. First time  

  2. Second time 

  3. Bothtimes 

Solution: Total number of cases = 5×4 = 20 
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cases, the concept of combination is used. The different selections that can be made out of a given set of 
things taking some or all of them at a time are called combinations. The number of ways of selection of r 

objects from a set of n objects is denoted by ncr , which is  

!
!( )!

nncr r n r



  

Example 6: (a) Four cards are drawn at random from a pack of 52 cards. Find the probability that 

1. They are a king, a queen, a jack and an ace. 

2. Two are kings and two are queen. 

3. Two are black and two are red. 

4. There are two hearts and two cards of diamonds. 

(b)In shuffling a pack of cards, four are accidentally dropped,find the chance that the missing cards 
should be one from each suit. 

Solution: (a) Four cards can be drawn from a well-shuffled packof 52 cards in 52
4c ways, which gives 

the exhaustive number of cases. 

1. 1 king can be drawn out of the 4 kings in 4
1c  ways. Similarly, 1 queen, 1 jack and 1 ace can each 

be drawn in 4
1c =4 ways. Since any one of the ways of drawing a king can be associated with any 

one of the ways of drawing a queen, a jack and an ace,the favourable numbers of cases 

are 4 4 4 4
1 1 1 1c c c c    

Hence the required probability is  

4 4 4 4
2561 1 1 1

52 52
4 4

c c c c

c C

  
  

2. Required probability = 
4 4

2 2
52

4

C C

C


 

3. Since there are 26 black cards (of spade and clubs) and 26 red cards (of diamond and hearts) in a pack 

of cards, the required probability
26 26

2 2
52

4

C C

C


   
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P(A) =  
8!

12!3!
10! 15

2!3!3!

 . 

 Problems: 

1. Three unbiased coins are tossed simultaneously. Find the probability of getting  

(i) at least two heads  

(ii) at most two heads 

(iii) All heads  

(iv) Exactly one head  

(v) Exactly one tail. 

2. A single letter selected at random from the word ‘STATISTICS’. What is the probability that it is a 
vowel? 

3. A committee of 4 people is to be appointed from 3 officers of the production department, 4 officers 
of the purchase department, 2 officers of the sales department and 1 chartered accountant. Find the 
probability of forming the committee in the following manner:  

(a) There must be one from each category.  

(b) It should have at least one from the purchase department.  

(c) The chartered accountant must be in the committee. 

4. In a random arrangement of the letters of the word ‘COMMERCE‘.Find the probability that all the 
vowels come together. 

5. (a) If the letters of the word ‘REGULATIONS’ be arranged at random, what is the chance that there 
will be exactly 4 letters between R and E? 

(b) What is the probability that four S‘s come consecutively in the word ‘MISSISSIPPI‘? 

6. Compare the chances of throwing 4 with one die, 8 with two dice and 12 with three dice. 

7. A and B throw three dice; if A throws 14, find B’s chance throwing a higher number. 

8. In a family, there are two children. Write the sample space and find the probability that 

(a) The elder child is a girl 

(b) Younger child is a girl  

(c)  Both are girls 

(d) Both are of opposite sex. 
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2( )( )
( )

mn BP B
n S N

  . 

 Since the events A and B are mutually exclusive, the total number of events favorable to either A or B 

i.e. 1 2( )n A B m m   then 

1 2( ) ( ) ( )( ) ( ) ( )
( )

m mn A B n A n BP A B P A P B
n S N N N
 

       . 

Theorem 6: For n events A1, A2,...,An, we have  

 ...1( ) ( ) ( ) ... ( 1) ( ... )1 21 11
i

n n nP A P A P A A P A A Ani i ji i j ni
      

   
   

          

Proof: For two events A1 and A2, we have  

P(A1  A2)=P(A1)+P(A2) – P(A1   A2 )           …(i) 

Hence (*) is true for n=2 

Let us suppose that (*) is true for n=r (say)  

1( ) ( ) ( ) ... ( 1) ( ... )1 21 11
i

r r rP A P A P A A P A A Ai i j ri i j ri
      

   
    …(ii) 

Now, 
1

( ) {( ) }11 1

r r
P A P A Ai i ri i


  

    

( ) ( ) {( ) }1 11 1

r r
P A P A P A Ai r i ri i

    
    

( ) ( ) {( ( )}1 11 1

r r
P A P A P A Ai r i ri i

    
    

          (By distribution law) 

1 1( ) ( ) ( ) ... ( 1) ( ... )1 21 11

( ) {( ( )}1 11

r r rP A P A P A A P A A Ai i i j ri i j ri
r

P A P A Ar i ri

        
   

 

   

 

 (From (ii) 
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1 1( ) ( ) ... ( 1) ( ... ) ( )1 2 11 1 1
1( ) ... ( 1) ( ... )}1 1 2 11

r rrP A P A A P A A A P A Ai i j r i ri i j r i
rP A A A P A A A Ai j r r ri j r

              
        

    

    
   

         from equation (ii) 

1

1 1
( ) ( ) ( ) ( ) ... ( 1) ( ... )1 1 2 11 11

r

i
i

r r rP A P A P A A P A A P A A Ai i j i r ri i j ri 

 
            

    

1 1
( ) ( ) ( ) ... ( 1) ( ... )1 2 11 1 11

i

r r rP A P A P A A P A A Ai i j ri i j ri

 
           

     

Hence by the principle of mathematical induction, it follows that (*) is true for all +ve integral values on 
n.  

Example 12: Two dice are tossed. Find the probability of getting ‘an even number on the first die or a 
total of 8’. 

Solution: In a random toss of two dice, sample space S is given by 

S={1,2,3,4,5,6}X{,1,2,3,4,5,6} n(s)=6×6=36 

Let us define the events 

A: Getting an even number on the first dice. 

B: the sum of the points obtained on the two dice 8. 

These events are represented by the following subset of S. 

A={2,4,6}X{1,2,3,4,5,6 }⇒n(A)=3×6=18 

B= {(2,6),(6,2),( 3,5),(5,3), (4, 4)}⇒ n(B)=5 

Also A∩B={(2,6),(6,2),(4,4)}⇒n(A∩B)=3 

( ) 18 1( )
( ) 36 2

n AP A
n S

     

( ) 5( )
( ) 36

n BP B
n S

   

and 
( ) 3 1( )

( ) 36 12
n A BP A B

n S


     

Hence the required probability is given by: 
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( ) ( ) ( ) ( )
1 5 3 5 .
2 36 36 9

P A B P A P B P A B    

   
 

Example 13: An integer is chosen at random from two hundred digits. What is the probability that the 
integer is divisible by 6 or 8? 

Solution: The sample space of random experiment is 

S=1,2,3,……….199,200 ⇒n(S)=200 

The event A: ‘integer chosen is divisible by 6’ has the sample points given by: 

A= 6, 12, 18………..198 ⇒n(A)=198/6=33    
 

33
200

n
P

n S
A

A    

Similarly the event B: ‘integer chosen is divisible by 8’ has the sample points given by: 

B=8, 16,24,…,200⇒n(B)=200/8=25      

   
 

25
200

n B
P B

n S
    

The LCM of 6 and 8 is 24. Hence a no. is divisible by both 6 and 8 if it is divisible by 24. 

∴A∩B=24, 48, 72 ,…, 192 ⇒    192 88 
24 200

n A B P A B       

Hence the required probability is: 

      33 25 8 1 ( )  
200 200 200 4

P A B P A P B P A B         . 

Example 14: The probability that a student passes a physics test is 2/3 and probability that he passes 
both a Physics test and an English test is 14/45. The probability that he passes at least one that is 
4/5.What is the probability that he passes the English test? 

Solution: Let us define the following Events: 

A: the student passes a Physics test; 

B: the student passes an English test; 

So, P(A)=2/3,P(A∩B)=14/45;P(A∪B)=4/5 and we want, P(B) 

       

 

4 2 14 , ;
5 5 45

4 14 2 4 .
5

)

4 5 9

(

5

P A B P A P B P A B P B

P B

       

    
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Example 15: An investment consultant predicts that the odds against the price of a certain stock will go 
up during the next week is 2:1 and the odds in favour of the price remaining the same are 1:3. What is 
the probability that the price of the stock will go down during the next week? 

Solution: Let A denote the event that ‘stock price will go up’ and B be the event ‘Stock price will 
remains same. 

Then P(A)=1/(2+1)=1/3 and P(B)=1/(1+3)=1/4 

(∴P Stock price will either go up or remain same) 

is given by :     1 1 7
3 4 1

( )
2

P A B P A P B       

Hence, the probability that stock price will go down is given by: 

( )P A B   =1-P(A∪B)=1-7/12=5/12. 

Example 16: An MBA applies for a job in two firms X and Y. The probability of his being selected in 
firm X is 0.7 and being rejected at Y is 0.5. The probability of at least one of his applications being 
rejected is 0.6. What is probability that he will be selected in one of the firms? 

Solution: Let A and B denotes the events that the person is selected in firms X and Y respectively. Then 
in the usual notations, we are given: 

( ) 0.7 ( ) 1 0.7 0.3P A P A      

P(B)=0.5 ⇒P( B )= 1-0.5=0.5 

and ( )P A B = 0.6= ( ) ( )P A P B  ( )P A B          ….(ii) 

The probability that the persons will be selected in one of the two firms X and Y is given by: 

P(A∪B)=1- ( )P A B =1-P( A )- ( )P B + ( )P A B           (from ii) 

=1-0.3-0.5+0.6=0.8                   (from i) 

Example 17: Three newspapers A, B and C are published in a certain city. It is estimated from a survey 
that of the adult population: 20% read A, 16% read B, 14% read C, 8% read both A and B, 5% read both 
A and C, 4% read both B and C 2% read all three. Find what percentage read at least one of the papers? 

Solution: Let E, F and G denote the events that the adult reads newspaper A, B and C respectively. Then 
we are given:  

     

     

 

20 16 14,    ,    ,
100 100 100

8 5 4 ,  ,    
100 100 100

2and 
100

P E P F P G

P E F P E G P F G

P E F G

  

     

  
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The required probability that an adult reads at least one of the newspapers (By Addition Theorem) is 
given by: 

           
20 16 14 8 4 5 2

100 10

( )

0 100 100 100 100 100
35 0.35

100

)P E F G P E P F P G P E F PF G P E G P E F G             

      

 

 

Hence 35% of adult population reads at least one of the newspapers. 

Example 18: A card is drawn at random from a pack of 52 cards. Find the probability that the drawn 
card is either a club or an ace of diamond. 

Solution : Let A : Event of drawing a card of cluband 

B:Event of drawing an ace of diamond 

The probability of drawing a card of club 13( )
52

P A     

The probability of drawing an ace of diamond 1( )
52

P B   

Since the events are mutually exclusive, the probability of the drawn card being a club or an ace of 
diamond is: 

13 1 7( ) ( ) ( )
52 52 26

P A B P A P B      . 

Problems:  

1. From a pack of 52 playing cards, one card is drawn at random. What is the probability that it is a 
jack of spade or queen of heart? 

2. 25 lottery tickets are marked with first 25 numerals. A ticket is drawn at random. Find the 
probability that it is multiple of 5 or 7. 

3.  Find the probability of getting either a number multiple of 3 or a prime number when a fair die is 
thrown. 

4. There are 40 pages in a book. A page is opened at random. Find the probability that the number of 
this opened page is a multiple of 3 or 5. 

5.  A card is drawn from a pack of 52 playing cards, find the probability that the drawn card is an ace 
or a red colour card.  

6.  Two dice are thrown together. Find the probability that the sum of the numbers turned up is either 
6 or 8. 
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7.  A card is drawn from a pack of 52 playing cards. Find the probability that it is either a king or a red 
card. 

1.6 Boole’s Inequality 

Statement: For n events A1, A2,…, An, we have  

( ) ( ) ( ) ( 1)
11

( ) ( ) ( ).
11

n n
a P A P A ni iii

n n
b P A P Ai iii

  


 






  

Proof: (a)P (A1∪A2)=P(A1)+P(A2)-P(A1∩ A2)≤1 

⇒P(A1∩A2)≥ P(A1)+P(A2) -1          ….(i) 

Hence (a) is true for n=2 

Let us now suppose that (a) is true for n=r (say) that 

( ) ( ) ( 1)
11

r r
P A P A ri iii

  


        

Then for n=r+1 

1
( ) ( )11 1

r r
P A P A Ai i ri i


  

        …..(ii) 

( ) ( 1) ( ) 111

r
P A r P Ai ri

     
 

( ) ( ) ( 1)
11

n n
P A P A ni iii

  


           (is true for n=r+1 also) 

The results now follow by the principle of mathematical induction. 

b) ( ) ( )
11

n n
P A P Ai iii

 


  

We know, P(A1∪A2)=P(A1)+P(A2)- P(A1∩A2) 

≤ P(A1)+P(A2)       …(iii) 

Hence (b) is true for n=2. 

Let us now suppose that (b) is true for n=r, 
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so that    ( ) ( )
11

r r
P A P Ai iii

 


         ....(iv)      

Now,
1

( ) ( )11 1

r r
P A P A Ai i ri i


  

         

1
( ) ( ( ) ( )11 1

r r
P A P A P Ai i ri i


   

  (using (iii)) 

( ) ( )
11

n n
P A P Ai iii

 


         (using (iv) )(is true for n=r+1 also) 

Hence by mathematical induction we conclude that (b) is true for all positive integral values of n. 

1.7 Conditional Probability 

In many situations we have the information about the occurrence of an event A and are required to find 
out the probability of the occurrence of another event B. The probability attached to such an event is 
called the conditional probability and is denoted by P (A|B) or in other words, probability of A given 
that B has occurred. For example, if we want to find the probability of an ace of spade if we know that 
card drawn from a pack of cards is black. Let us consider another problem relating to dairy plant. There 
are two lots of full cream pouches A and B, each containing some defective pouches. A coin is tossed 
and if it turns up with its head upside lot A is selected and if it turns with tail up, lot B is selected. In this 
problem, we are interested to know the probability of the event that a milk pouch selected from the lot 
obtained in this manner is defective. 

Definition: The conditional probability of B given that event A has occurred is defined as 

( )( | ) ; if ( ) 0
( )

P A BP B A P A
P A


   

Let us consider the experiment of throwing of a die once. The sample space of thisexperiment is {1, 2, 3, 
4, 5, 6}. 

Let E1: an even number shows up and E2: multiple of 3 show up. 

Then E1: {2, 4, 6} and E2: {3, 6}. Hence, P (E1) = 3/6 =and P (E2) = 2/6 =1/3. 

In order to find the probability of occurrence of E2 when it is given that E1 has occurred,we know that in 
a single throw of die 2 or 4or 6 has come up. Out of these only 6 is favorable to E2. So the probability of 
occurrence of E2 when it is given that E1 has occurred is equal to 1/3. This probability of E2 when E1 has 
occurred is written as P (E2|E1). Here we find that P (E2|E1) =P (E2). Let us consider the event E3: a 
number greater than 3 shows up then E3:{4,5,6} and P(E3)=3/6=1/2 Out of 2,4 and 6, two numbers 
namely 4 and 6 are favorable to E3. Therefore, P (E3|E1) =2/3. The events of the type E1 and E2 are called 
independent events as the occurrence or non-occurrence of E1 does not affect the probability of 
occurrence or non-occurrence of E2. The events E1 and E3 are not independent. 
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Examples 19: From a city population, the probability of selecting (i) a male or a smoker is 7/10 (ii) a 
male smoker is 2/5 and (iii) a male, if a smoker is already selected is 2/3. Find the probability of 
selecting (a) a non-smoker (b) a male and (c) a smoker, if a male is first selected. 

Solution: Define the following events: 

A: a male is selected           B: a smoker is selected we are given:  

   7 2 2,  ,  
10 5

( ) |
3

P A B P A B P A B      

(a) The probability of selecting a non-smoker is 

P( B )=1-P(B)=1  
 

 
|

P A B
P A B




[∵P(A|B)=P(A∩B)/P(B) ] 

  =1- 3
5

 = 2
5

 

(b) The probability of selecting a male 

 (By Addition Theorem) is  

      ( ) 7 2 3 1   
10 5 5 2

P A P A B P A B P B         . 

 (c ) The probability of selecting a smoker if a male is first selected is: 

   |
( )

P A B
P B A

P A


 2 / 5
1/

4
2

 
5

  . 

Example 20: Two computers A and B are to be marked. A salesman who is assigned the job of finding 
customers for them has 60% and 40% chances respectively of succeeding in case of computer A and B. 
The two computers can be sold independently. Given that he was able to sell at least one computer, what 
is the probability that computer A has been sold?   

Solution: Let E denote the event that computer A is marketed and F denote the event that Computer B is 
marked. We are given: 

       60 400.60 0.40    0.40 0.60
100 100

P E P E and P F P F         

Required Probability=
 [ ]

[ | ( )]
( )

P E E F
P E E F

P E F
 




  

( ) ( ) 0.6 0.79
1 0.4 0.61 ( ) 1 ( ) ( )

P E P E
P E F P E P F

  
  

. 

Example 21: An urn contains 4 red and 7 blue balls. Two balls are drawn one by one without 
replacement. Find the probability of getting 2 red balls.  



Mathematical Statistics 25 

 

Solution: Let A be the event that first ball drawn is red and B be the event that the second ball drawn is 
red. 

∴    4 3 and |  
11 10

P A P B A  (it is given that one red ball has already been drawn) 

∴	The required probability= 

     | 4 3 6   
11 10 55

P A and B P A P B A    . 

Problems: 

1. From a pack of 52 cards, two cards are drawn at random one after the other with replacement. 
What is the probability that both cards are kings? 

2. A bag contains 4 red balls, 3 white balls and 5 black balls. Two balls are drawn one after the 
other with replacement. Find the probability that first is red and the second is black. 

1.8 Multiplication Theorem of Probability  

Theorem: For two events A and B, P (A∩B)= P(A). P(B|A)     P(A)>0 

=P(B).P(A|B)      , P(B)>0 

where P(B|A) represent conditional probability of occurrence of B when the event A has already 
happened and P(A|B) is the conditional probability of happening of A, given that B has already 
happened. 

Proof: Let A and B be the events associated with the sample space S of a random experiment with 
exhaustive number of outcomes (sample points) N, i.e., n(S) = N. Then by definition 

( )( )
( )

n A BP A B
n S


                               (1) 

For the conditional event A|B (i.e., the happening of A under the condition that B has happened), the 
favorable outcomes (sample points) must be out of the sample points of B. In other words, for the event 
A|B, the sample space is B and hence 

 
( )( | )

( )
n A BP A B

n B


  

Similarly, we have 

 
( )( | )

( )
n A BP B A

n A


  

On multiplying and dividing equation (1) by n(A), we get 
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( ) (( )
( ) ( )
( ). ( | )

n A n A BP A B
n S n A
P A P B A


  


  

Also 

 
( ) (( )
( ) ( )
( ). ( | ).

n B n A BP A B
n S n B
P B P A B


  


 

Generalization 

The multiplication theorem of probability can be extended to more than two events. Thus, for three 
events A1, A2 and A3 we have 

 P(A1 ∩ A2 ∩ A3) = P(A1) P(A2|A1) P(A3|A1 ∩ A2) 

For n events A1, A2,..., An , we have 

 P(A1 ∩ A2 ∩ ... ∩ An) = P(A1) P(A2|A1) P(A3|A1 ∩ A2)... P(An|A1∩ A2 ∩ ... ∩ An-1) 

Example 22: A bag contains 5 white and 8 red balls. Two successive drawings of 3 balls are made such 
that (a) the balls are replaced before the second drawing, and (b) the balls are not replaced before the 
second draw. Find the probability that the first drawing will give 3 white and the second 3 red balls in 
each case. 

Solution:(a) When balls are replaced. 

Total balls in the bag = 8 + 5 = 13 

3 balls can be drawn out of total of 13 balls in 13C3 ways. 

3 white balls can be drawn out of 5 white balls in 5C3 ways. 

Probability of 3 white balls =
5

3
13

3

10(3 )
286

CP W
C

  . 

Since the balls are replaced after the first draw so again there are 13 balls in the bag 3 red balls 
can be drawn out of 8 red balls in 8C3 ways. 

Probability of 3 red balls =
8

3
13

3

56(3 )
286

CP R
C

    

Since the events are independent, the required probability is: 
5 8

3 3
13 13

3 3

10 56 140(3  and 3R)
286 286 20449

C CP W
C C

     . 

  (b) When the balls are not replaced before second draw 

Total balls in the bag = 8 + 5 = 13 
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3 balls can be drawn out of 13 balls in 13C3 ways. 

3 white balls can be drawn out of 5 white balls in 5C3 ways. 

The probability of drawing 3 white balls = 
5

3
13

3

(3 ) CP W
C

  

After the first draw, balls left are 10, 3 balls can be drawn out of 10 balls in 10C3 ways. 

3 red balls can be drawn out of 8 balls in 8C3 ways. Probability of drawing 3 red balls = 
8

3
10

3

C
C

. 

Since both the events are dependent, the required probability is: 

                       
5 8

3 3
13 10

3 3

5 7 7(3  and 3R) (3 ) (3 | 3 )
143 15 449

C CP W P W P R W
C C

        . 

Example 23. A bag contains 5 white and 3 red balls and four balls are successively drawn and are not 
replaced. What is the chance that (i) white and red balls appear alternatively and (ii) red and white balls 
appear alternatively? 

Solution (i) The probability of drawing a white ball = 5/8 

The probability of drawing a red ball = 3/7 

The probability of drawing a white ball = 4/6 and the probability of drawing a red ball = 2/5 

Since the events are dependent, therefore the required probability is: 

P(W and R and W and R)= ( )P W R W R    

   =P(W).P(R|W).P(W|WR).P(R|WRW) 

   = 5 3 4 2 1
8 7 6 5 14
     

 (ii) The probability of drawing a red ball = 3/8 and the probability of drawing a white ball = 5/7 

The probability of drawing a red ball = 2/6 and the probability of drawing a white ball = 4/5 

Since the events are dependent, therefore the required probability is: 

                P(R and W and R and W)= ( )P R W R W    

   =P(R).P(W|R).P(R|RW).P(W|RWR) 

   = 3 5 2 4 1
8 7 6 5 14
    . 

Example 24: (Huyghen’s Problem) A and B throw alternatively witha pair of balanced dice. A wins if 
he throws a sum of six points before B throws a sum of seven points while B wins if he throws sum 
ofseven points before A throws a sum of six pints. If A begins the game, show that his probability of 
winning is 30/61. 
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Solution: Let of Ai denote the event A’s throwing ‚‘6‘ in the ith throw, i=1,2,3,..... and Let of Bi denote 
the event B’s throwing ‚‘7‘ in the ith throw, i=1,2,3,....; with a pair of dice. Then  an d   i iA B  are the 
complementary events. 

'6 '  can be obtained with two dice in the following ways:
(1,5), (5,1), (2, 4), (4, 2), (3,3),  i.e., in 5 different ways.

5 5 31( ) ( ) 1 ( ) 1 , 1, 2,3....
36 36 36iP A P A P A i        

'7 '  can be obtained with two dice in the following ways:
(1, 6), (6,1), (2,5), (5, 2), (3, 4), (4,3),  i.e., in 6 different ways.

1 1 5P(A ) ( ) 1 ( ) 1 , 1, 2,3....
6 6 6i P A P A i        

1 2 3 41 5

If  start the game, he will win in the following ways:    

(i)   happens,          (ii)     (iii)   happens and so on.1 2 3
Hence by addition theorem of probability of 's winning, 

A

A A B A A B A B A

A P

     

( ) is given by:A

1 2 3 41 5

2 1 2 3 41 5

( ) ( ) ( ) ( ) ...

        ( ) (   ) (  ) ....1 2 3
        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ...1 3

5 31 5 5 31 5 31 5 5       ...
36 36 6 36 36 6 36 6 36

5
36       311

P A P i P ii P iii

P A P A B A P A B A B A

P A P A P B P A P A P B P A P B P A

   

         

   

         




30 .5 61
36 6




 

Problems:  

1. A coin is tossed once. If it shows head, it is tossed again and if it shows tail, then a dice is tossed. 
Let E1 be the event: the first throw of coin shows tail and E2 be the event: the dice shows a 
number greater than 4. Find P (E2|E1). 

2. A bag contains 5 white and 4 black balls. A ball is drawn from this bag and is replaced and then 
second draw of a ball is made. What is the probability that two balls are of different colors. 

3.  A can hit a target 4 times in 5 shots. B 3 times in 4 shots and C twice in 3 shots. They fire a 
volley. What is the probability that 

(a)Two shots hit the target 

(b) At least two shots hit the target. 

4. Three small sized Herds A, B and C consist of 3 cows and 1 buffalo, 2 cows and 2 buffaloes, 1 
cow and 3 buffaloes, respectively. Find the probability of selecting one cow and two buffaloes 
from three Herds. 
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1.9 Independent Event 

Two or more events are said to be independent if the happening or non-happening of any one of them, 
does not, in any way, affect the happening of others. For Example: Throwing of two dice say die 1 and 
die 2. It is obvious that the occurrence of certain number of dots on the die 1 has nothing to do with a 
similar event for the die 2 the two are quite independent of each other.  

Definition: An event A is said to be independent (or statistically independent) of another event B, if the 
conditional probability of A given B, i.e., P(A|B) is equal to the unconditional probability of B, i.e., if 
P(A|B)=P(A). 

Multiplication Theorem of Probability for Independent Event 

Theorem: If A and B are two events withpositive probabilities P(A)≠0, P(B)≠0, then A and B are 
independent if and only if P(A∩B)=P(A).P(B)        …(*) 

Proof: We have  P(A∩B)=P(A).P(B|A)=P(B)P(A|B ;P(A)≠0,  P(B)≠0     … (i) 

If A and B are independent, i.e., A is independent of B and B is independent of A, then, we have, P(A|B) 
= P(A)and P(B|A)=P(B)      …(ii) 

From (i) and (ii), we get P(A∩B)= P(A).P(B) are required conversely, if (*) holds, then we get 

P(A∩B)/P(B) = P(A)⇒P(A|B)= P(A),     P(A∩B)/P(A)=P(B)⇒P(B|A)=P(B)   … (iii) 

(iii) implies that A and B are independent events. Hence, for independent events A and B, the probability 
that both of these occur simultaneously is the product of their respective probabilities.  

This rule is known as the Multiplication Rule of Probability. 

Extension of Multiplication Theorem of Probability to n Events  

Theorem: For n events A1,A2,…An, we have
( ... ) ( ) ( | ) ( | )... ( | ... )1 2 1 2 1 3 1 2 1 2 1P A A A P A P A A P A A A P A A A An n n         …(A) 

where ( | ... )P A A A Ai j k l    represents the conditional probability of the event Ai given that the 

events Aj, Ak, …, Al have already happened. 

Proof: For two events A1 and A2, P(A1 ∩ A2)=P(A1)P(A2 |A1) 

We have for three events A1, A2 and A3 

P(A1∩ A2∩ A3)=P(A1 ∩( A2 ∩ A3))  

 =P(A1)P((A2 ∩ A3)|A1)     (∵P(A∩B)=P(A)P(B|A))            

=P(A1) P(A2 |A1)P(A3|(A2 ∩ A3)) 

Thus we find that (A) is true for n =2 and n=3  

Let us suppose that (A) is true for n=k, so that 

( ... ) ( ) ( | ) ( | )... ( | ... )1 2 1 2 1 3 1 2 1 2 1P A A A P A P A A P A A A P A A A Ak k k         …(B)  
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Now 
2 3(( ... ) ) ( ... ) ( | ... )1 2 1 1 21 1kP A A A A P A A A A P A A A Ak k k k             

( ) ( | ) ( | )... ( | ... ) ( | ... )1 2 1 3 1 2 1 2 1 1 1 2P A P A A P A A A P A A A A P A A A Ak k k k         

     (using B) 

Thus (A) is true for n=k+1 also since (A) is true for n=2 and n=3, by the principle of mathematical 
induction. It follows that (A) is true for all positive integral value of n. 

 Extension of Multiplication Theorem of Probability for n Independent Events  

Theorem: Necessary and Sufficient condition for independence of n events A1, A2, A3, …,An is that the 
probability of their simultaneous happening is equal to the product of their respective probabilities, i.e.,  

P(A1∩ A2∩…∩An)=P(A1)P(A2)P (A3)…P(An)      --- (C) 

Proof: If A1, A2,,…,,An are independent events then  

P(A2|A1)=P(A2),P(A3|A1∩A2)=P(A3),..., P(An|A1∩A2∩…∩An-1)=P(An) 

 Hence from equation (c), we get P(A1∩A2∩A3∩…∩An)=P(A1)P(A2)….P(An) 

Conversely if (C) holds, then from (A) and (C), we get 

P(A2)= P(A2|A1);  

P(A3)=P(A3|A1∩ A2), …, P(An)=P(An|A1∩A2∩…∩An-1) 

⇒A1, A2, A3, …,An are independent events.  

Theorem: For Any three events A,B and C 

P(A∪B|C)= P(A|C)+P(B|C)-P(A∩B|C)  

Proof: We have P(A∪B)=P(A)+P(B)-P(A∩B) 

⇒P[(A∩C)∪(B∩C)]=P(A∩C)+P(B∩C)-P(A∩B∩C) 

Dividing both sides by P(C), we get 

 [( ) ( )]
( )

( ) ( )
( )

( ) ( ) (
( ) ( ) ( )

P A C P B C P A B CA C B C
P C

P A C P B C P A B C
P C P C P C

P
P C

      


   




 
 

       [( ) )] | | |P A B C P A C P B C P A B C
P C
 

     

⇒        [( ) )] | | |P A B C P A C P B C P A B C
P C
 

    . 

Theorem: For any three events A,B and C,   
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    |( ) .||P A B C P A B C P A C     

Proof:  

ܲሺܣ ∩ ሻܥ|തܤ ൅ ܲሺܣ ∩ ሻܥ|ܤ ൌ ܲሺܣ ∩ തܤ ∩ ሻܥሻ/ܲሺܥ ൅ ܲሺܣ ∩ ܤ ∩ ሻܥሻ/ܲሺܥ

                                                            ൌ
ܲሺܣ ∩ തܤ ∩ ሻܥ ൅ ܲሺܣ ∩ ܤ ∩ ሻܥ

ܲሺܥሻ

                                                           ൌ
ܲሺܣ ∩ ሻܥ
ܲሺܥሻ

ൌ ܲሺܥ|ܣሻ

 

1.10 Pairwise Independent Events 

Consider n events , , , ...,1 2 3A A A An defined on the same sample space so that P(Ai)>0, i=1,2,…n. These 

events are said to be pair wise independent if every pair of two events is independent.  

Definition: The events , , , ...,1 2 3A A A An  are said to be pairwise independent if and only if 

ܲሺܣ௜ ∩ ௝ሻܣ ൌ ܲሺܣ௜ሻܲሺܣ௝ሻ; ݅ ് ݆ ൌ 1,2,3, . . . ,݊ 

1.11 Mutually Independent Events 

The events in S (Sample Space) are said to be mutually independent if the probability of the 
simultaneous occurrence of (any) finite number of them is equal to the product of their respective 
probabilities. 

Hence, the events are mutually independent if they are independents by pair, and by triplets, and by 
quadruples, and so on.  

Definition: The n events , , , ...,1 2 3A A A An in a sample space S are said to be mutually independent if  

( ... ) ( ) ( )... ( ); 1, 2,3,...,1 2 1 2P A A A P A P A P A k ni i ik i i ik     

Theorem: If A, B, C are mutually independent events then A∪B and C are also independent. 

Proof: We are required to prove:  

P[(A∪B)∩C]=P(A∪B)P(C) 

L.H.S. =P[(A∩C)∪(B∩C)]                (By Distributive law) 

=P(A∩C)+P(B∩C)-P(A∩B∩C)  

=P(A)P(C)+P(B)P(C)-P(A)P(B)P(C)   [∵A,B, and C are mutually independent] 

=P(C) [P(A)+P(B)-P(A∩B)] 

=P(C)P(A∪B)=R.H.S. 

Hence (A∪B) and C are independent. 

Theorem: If A, B and C are random events in a sample space and if A, B and C are pairwise independent 
and A is independent of (B∪C), then  A, B and C are mutually independent. 
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Proof: We are given, 

P(A∩B)=P(A)P(B),P(B∩C)=P(B)P(C),P(A∩C)=P(A)P(C)            ....(i) 

P[A∩(B∪C)]=P(A)P(B∪C) 

Now, P[A∩(B∪C)=P[(A∩B)∪(A∩C)] 

=P(A∩B)+P(A∩C)-P[(A∩B)∩(A∩C)] 

                           =P(A)P(B)+P(A).P(C)-P(A∩B∩C)       …(ii)       (from (i)) 

and     P(A)P(B∪C)=P(A)[P(B)+P(C)-P(B∩C)] 

=P(A)P(B)+P(A)P(C)-P(A)P(B∩C)   …(iii) 

from (ii) and (iii), on using (i), we get  

P(A∩B∩C)=P(A)P(B∩C)=P(A)P(B)P(C)      (from (i)) 

Hence A, B and C are mutually independent. 

1.12   Law of Total Probability 

Statement:– Let S be the sample space and E1, E2, …., En be n mutually exclusive and exhaustive events 
with P(Ei)≠0;i=1,2,….,n. Let A be any event which is a subset of E1 E2  ……. En (i.e., at least one 
of the events E1, E2 …….En) with P(A)>0 then 

P(A)=P(E1)P(A|E1)+P(E2 )P(A|E2)+…+P(En)P(A|En)  

= ( ) ( | )
1

n
P E P A Ei ii




 

Proof: As A is a subset ofE1  E2  ……. En , 

∴ A= A∩( E1  E2 ……. En )                     (∵if A is subset of B,then A=A∩B) 

⇒A=(A∩ E1 ) ∪(A∩E2)∪…….∪(A∩En)    

                               (Distributive property of set theory) 

A=(E1∩A) ∪(E2∩A)∪……∪(En∩A) 

⇒P(A)= P[(A∩ E1 ) ∪(A∩E2)∪…….∪(A∩En)] 

P(A∩ E1 ) +P(A∩E2)+....+P(A∩En) 

[∵E1∪E2∪…….∪Enand hence E1∩A E2∩A…….En∩A are mutually exclusive]. 

(using multiplication theorem for dependent events)  

= ( ) ( | )
1

n
P E P A Ei ii




 

Hence proved. 
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Example 25: There are two bags. First bag contains 5 red, 6 white balls and the second bag contains 3 
red, 4 white balls. One bag is selected at random and a ball is drawn from it. What is the probability that 
it is (i) red (ii) white. 

Solution: Let E1 be the event first bag is selected and E2 be the event that second bag is selected.  

∴P(E1)=P(E2)=1/2 

(i) Let A be the event of getting a red ball from the selected bag. 

    ∴     P(A|E1) = 5/11,    and P(A|E2)= 3/7 

  Thus, the required probability is given by  

  P(A)=P(E1)P(A|E1)+P(E2)P(A|E2) 

   =(1/2)×(5/11)+1/2×3/7 =5/22+3/14=(35+33)/154 

  =68/154=34/77. 

(ii) Let W be the event of getting a white ball from the selected bag.  

∴  P(W|E1)= 6/11,    and P(W|E2)= 4/7 

  Thus, the required probability is given by 

P(W)=P(E1) P(W|E1)+P(E2) P(W|E2) 

=(1/2) ×(6/11)+(1/2×(4/7) 

 =3/11+2/7=(21+22)/77 

 =43/77. 

             Example 26: The probabilities of selection of 3 persons forthe post of a principal in a newly co-
education in the college are 0.2, 0.3 and 0.5, respectively. Find the probability that co-education is 
introduced in the college.  

Solution: Let E1, E2, E3 be the events of selection of first, second and third person for the post of a 
principal respectively. Let A be the event that co-education is introduced.  

∴P(E1) =4/9, P(E2) =3/9, P(E3)=2/9 ,  

P(A|E1)=0.2,P(A|E2)=0.3,P(A|E3)=0.5 

Thus the required probability is 

P(A)=P(E1) P(A|E1)+P(E2) P(A|E2)+P(E3) P(A|E3)  

=4/9×0.2+3/9×0.3+2/3×0.5 =0.89+0.99+19=2.79=0.3 

 1.13 Baye’s Theorem 

Statement: Let S be the sample space and E1, E2,….,En be n mutually exclusive and exhaustive events 
with P(Ei) ≠0;i=1,2….n. Let A be any event which is a subset of E1∪E2∪…….∪En (i.e. at least one of the 
events E1∪E2∪…….∪En) with P(A)>0, then 
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( ) ( | )
( | )

( )i

P E P A Ei iP E A
P A

 , i=1,2,,….n 

 where P(A)=P(E1) P(A|E1)+P(E2) P(A|E2)+……+P(En) P(A|En) 

 Proof:Since  , we have A=A , ,
1 1 1

n n n
A E E A Ei i ii i i

 
       
    [By distributive law] 

 Since ( ) ,( 1,2,3,..., )i iA E E i n    are mutually disjoint events, we have by addition theorem of 
probability: 

 
1 1

( ) ( ) ( ) ( )( | )
1

n n

i i i i
i i

n
P A P A E P A E P E A E

i  

 
       
  

   

by multiplication theorem of probability. 

Also we have  

1

( ) ( ) ( | )
( ) ( ) ( | )( | )

( ) ( ) ( | )

i i

i i i
i n

i i
i

P A E P A P E A
P A E P E P A EP E A

P A P E P A E


 


  


. 

Remarks:  
1. The probabilities Ei are known as prior probabilities because they exist before we gain any 

information from experiment itself. 

2. The probabilities P(A|Ei ), i=1,2,3,…,n are called likelihood because they indicate how likely the 
event A under consideration is to occur, given each and every a prior probability. 

3. The probability P(Ei|A) are caller posterior probabilities because they are determined after the 
results of the experiment are known. 

 Example 27: The contents of urns I, II and III are follows: 

  1 white, 2 black and 3 red balls 

    2 white, 1 black and 1 red balls and 

 4 white, 5 black and 3 red balls 

One urn is chosen at random and two balls drawn from it. They happen to be white and red. What is the 
probability that they come from urns I, II and III? 

Solution: Let E1, E2 and E3 denote the events that the urn I, II and III is chosen, respectively, and let A 
be the event that the two balls taken from the selected urn are white & red.  
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then P(E1)=P(E2)=P(E3)=1/3, P(A|E1)=
1 3 1
6 5

2C


 ,    

P(A|E2)= 2 1 1/ 3
14 2C


    and P(A/E3)= 4 3 2
12 112C


  

∴
( ) ( | )2 2( | )2 3

( ) ( | )
1

P E P A E
P E A

P E P A Ei ii






=
1 1

553 3
1 1 1 1 118( )
3 5 3 11




 
 

Similarly  

P(E3/A)=
1 2

303 3
1 1 1 2 118( )
3 5 3 11




 
 

P(E1|A)=
1 1

333 5
1 1 1 2 118( )
3 5 3 11




 
. 

Example 28: A speaks truth 4 out of 5 times. A die is tossed. He reports that there is a six. What is the 
chance that actually there were six? 

Solution: Let us define the following events  

 E1: A speaks truth; E2:A tells a lie 

 A: A reports a six 

 Give: P(E1)=4/5, P(E2)=1/5, P(A|E1)=1/6, P(A|E2)=5/6 

 The required probability is  

( ) ( | )1 1( | )1 2
( ) ( | )

1

P E P A E
P E A

P E P A Ei ii






 

=
4 1

45 6
4 1 1 5 9
5 6 5 6




  
. 
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Example 29: A letter is known to have come either from TATANAGAR or from CALCUTTA. On the 
envelope just two consecutive letters TA are visible. What is the probability that the letter came from 
CALCUTTA? 

Solution – Let E1 and E2 denote the events that the letter came from TATANAGAR and CALCUTTA 
respectively. Let A denote the event that two consecutive visible letters on the envelope are TA.  

 We have   

P(E1)=P(E2)=1/2,     P(A|E1)=2/8and  

P(A|E2)=1/7 

 Using the Baye’s theorem we get 

2 2( ) ( | )( | )2 2
( ) ( | )

1

P E P A EP E A
P E P A Ei ii






 

=
1 1

42 7
2 1 1 1 11
8 2 2 7




  
. 

Problems:  

1. The chance that doctor A will diagnose a disease X correctly is 60%. The chances that a patient 
will die by his treatment after correct diagnosis is 40% and the chance of death by wrong 
diagnosis is 70%. A patient of doctor A, who had disease X, died. What is the chance that his 
disease was diagnosed correctly?  

2. A and B are two weak students of statistics and their chance of solving a problem in statistics 

correctly are 1 1 and 
6 8

 respectively. Of the probability of their making a common error is find 

1
525

 and they obtain the same answer the probability that their answer is correct.



 
 

CCHHAAPPTTEERR--22  
RANDOM VARIABLES, MATHEMATICAL EXPECTATION AND MOMENT 

GENERATING FUNCTION 
 

Structure 

2.1 Introduction 
2.1.1 Random Variable 

2.2 Distribution Function 
2.3 Discrete Random Variable 

2.3.1 Probability Mass Function 
2.3.2 Discrete Distribution Function  

2.4 Continuous Random Variable 
2.4.1 Probability Density Function 
2.4.2 Various Measures of Central Tendency, Dispersion, Skewness and Kurtosis 
2.4.3 Continuous Distribution Function 

2.5 Two-Dimensional Random Variable 
 2.5.1 Joint, Marginal and Conditional Probability Mass Function 

2.5.2 Joint, Marginal and Conditional Probability Density Function 
2.5.3 Joint, Marginal and Conditional Distribution Function  

 2.5.4 Independent Random Variable 
2.5.5 Generalization to n-Dimensional Random Variable 

2.6 Expectation and its Properties 
2.7 Variance and Covariance 
2.8 Moment Generating Function and Their Properties 

2.1 Introduction 

In the previous units, we have studied the assignment and computations of probabilities of events in 
detail. Also, we were interested in knowing the occurrence of outcomes. In this chapter, we will study 
the important concept of a random variable and its probability distribution. It has been a general notion 
that if an experiment or a trial is conducted under identical conditions, values so obtained would be 
similar. But this is not always true. The observations are recorded about a factor or character under study 
e.g. fat, TS, moisture content etc., in a dairy product. Also, when ‘n’ coins are tossed, one may be 
interested in knowing the number of heads obtained. When a pair of dice is tossed, one may seek 
information about the sum of points. These can take different values, and the factor or character is 
termed as variable. These observations vary even though the experiment has been conducted under 
identical conditions. Therefore, we have a set of results or outcomes (Sample points) of a random 
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experiment. In the present unit, we will be interested in the numbers associated with such outcomes of 
the random experiments and this leads to study the concept of random variable. 

2.1.1 Random Variable 

A random variable (r.v.) is defined as a real number X connected with the outcome of a random 
experiment E. In other words, it is a rule that assigns a real number to each outcome (Sample points) is 
called a random variable. A r.v. has the following properties: 

(i) Each particular value of the random variables can be assigned some probability. 

(ii) Uniting all the probabilities associated with all the different values of a random variable 
gives the value 1.  

For example, if E consists of three tosses of a coin, we may consider random variable X which denotes 
the number of heads (0, 1, 2 or 3) 

Outcome: HHH HTH THH THH HTT THT TTH TTT 

Value of X : 3 2 2 2 1 1 1 0 

Thus, to every outcome (߱) there correspond a real number X((߱). Since the points of the sample space 
corresponds to outcomes, this means that a real number, which we denote by X(߱), is defined for each 
߱∈S and let us denote them by ߱1, ߱2, ...,	߱8 i.e. X(߱1) = 3, X(߱2)=2..., X (߱ 8) =0. Thus, we define a 
random variable as a real-valued function whose domain is the sample space associated with a random 
experiment and range is the real line. Generally, one-dimensional random variable is denoted by capital 
letters X,Y, Z, ..., etc. 

Example 1: If a pair of fair dice is tossed then S= {1,2,3,4,5,6} ×{1,2,3,4,5,6} and n(S)=36 

Let X be a random variable with image set 

 X(S) = {1, 2, 3, 4, 5, 6} 

P(X=1) = P{(1,1)} = 
1

36
 

P(X=2) = P{(2,1),(2,2),(1,2)}= 
3

36
 

P(X=3) = P{(3,1),(3,2), (3,3),(2,3),(1,3)} = 
5

36
 

P(X=4) = P{(4,1),(4,2),(4,3),(4,4),(3,4),(2,4),(1,4)} = 
7

36
 

      Similarly P(X=5) = 9
36
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and   P(X=6) = 
11

36
.
 

Some Results on Random Variable
 Some of the fundamental results and theorems on random variables (without proof). 

Consider the probability space (S, B, P), where S is the sample space, B is the  -field of subset of S 
and P is the probability function on B. 

1. If X1 and X2 are random variable and c is a constant then cX1, X1 +X2, X1X2 are also random 
variables. 

2. If X is a random variable then  

(i) 1/X, where 1 ( )
X

 = ∞ if X(ω)=0  

(ii) X+( ω) = max{0,X(ω)} 

(iii) X-( ω) = -min{0,X(ω)}  

(iv) |X|  

are random variables. 

3. If X1 and X2 are random variables, then (i) max{X1,X2} and (ii) min{X1,X2} are random 
variables. 

4. If X is a r.v. and f(.) is a continuous function, then f(X) is a r.v. 

5. If X is a r.v. and f(.) is a increasing function , then f(X) is a r.v. 

2.2 Distribution Function 

Definition: Let X be a r.v., the function F defined for all real x by 

F(x) = P {ω: X (ω) ≤ x}, -∞<x<∞  

is called the distribution function (d.f.) of the r.v. X. As X can take any real value, therefore the domain 
of the distribution function is the set of real number and F(x) is the probability value, therefore the range 
of the distribution function is [0,1]. 

Remark: A distribution function is also called the cumulative distribution function. Sometimes, the 

notation ( )XF x  is used to represent distribution function associated with the random variable X. 

Properties of Distribution Function: 

1. If F is the d.f. of the r.v. X and if a<b then  

P (a <X ≤b) = F(b) - F(a) 

Proof: Using addition theorem of probability  

P (a<X ≤b) + P (X ≤a) = P(X  ≤b) 
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P (a <X ≤b) = P(X ≤b) - P(X ≤a) = F(b) - F(a). 

Cor.1 
P(a൑X൑b)= 

P {(X = a)(a <X ≤b)} = P(X = a) + P(a <X ≤b) 

= P (X = a) + F(b) - F(a) 

Similarly, 

P (a <X <b) = P(a <X ≤b) - P(X = b) 

                  = F(b) - F(a) - P(X = b) 

 

P (a ≤X <b) =P(a <X <b)+P(X=a) 

                       = F(b) - F(a) - P(X = b) + P(X = a) 

2. If F is d.f. of one-imensional r.v. X , then  

(i) 0≤F(x)≤1 

(ii) F(x)≤F(y), if x<y 

In other words, all distribution functions are monotonically non-decreasing and lie between 0 and 1. 

3. If F is d.f. of one-dimensional r.v. X , then 

 F(-∞) = limxF(x)=0 and F(∞) = limx
F(x) = 1 

2.3 Discrete Random Variable 

If a random variable X assumes only a finite or countable set of values and for which the value which 
the variable takes depends on chance, it is called a discrete random variable. Here, countable number 
means the values which have one-to-one correspondence with the set of natural numbers. 

In other words, a real-valued function defined on a discrete sample space is called a discrete random 
variable. In case of discrete random variable, we usually talk of values at a point. Generally, it represents 
counted data. For example, number of defective milk pouches in a milk plant, marks obtained in a test, 
number of accidents per month, number of successes in ‘n’ trials etc. 

2.3.1 Probability Mass Function 

A discrete random variable assumes each of its values with a certain probability, i.e. each 
possible value of the random variable has an associated probability. If X is a discrete random variable 
with distinct values 1 2, ,..., ,...,nx x x  then the function p(x) defined as: 

  ip ,
p

 
(x)

X x   p if  x  xi i 
0 , if  x x ; i  X 1, 2, 3i

  

  




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is called the probability mass function of r.v. X. The number ( ); 1,2,...ip x i must satisfy the following 
conditions: 

(a) ( ) 0ip x i   i.e. all ip ’sare non-negative 

(b) 
1

( ) 1, . . total probability is onei
i

p x i e




  

The set of values which X takes is called spectrum of the random variable. This function pi = P (X=Xi) 
or p(x) is called the probability function or probability mass function (p.m.f.) of the random variable X 
and set of all possible ordered pairs {x, p(x)} is called the probability distribution of the random variable 
X. 

Example 2: Toss of a coin, S = {H, T}, let X be the r.v. defined by  

         X(H) = 1   ; if head occurs 

         X(T) = 0    ; if tail occurs 

 If the coin is fair, the probability function is P{(H)} = 
1

2
 and P{(T)} = 

1

2
and we can  speak of the 

probability distribution of the r.v. X as 

                P(X=1) = P{(H)}=
1

2
 and P(X=0)=  P{(T)}=

1

2
. 

Example 3: A r.v. X assumes the values -2,-1, 0, 1, 2 such that
[ 2] [ 1] [ 1] [ 2]P X P X P X P X          , and [ 0] [ 0] [ 0].P X P X P X      Find the 

probability mass function. 

Solution: As [ 0] [ 0] [ 0].P X P X P X      

[ 1] [ 2] [ 0] [ 1] [ 2]
[ 0]

[ 0] 2
Now, as [ 0] [ 0] [ 0] 1

[ 1] [ 2] [ 0] [ 1] [ 2] 1
2 1

6 1
1
6

P X P X P X P X P X
p p P X p p
P X p

P X P X P X
P X P X P X P X P X
p p p p p
p

p

           
     
  

     
           

    




 

1[ 1] [ 2] [ 1] [ 2]
6

P X P X P X P X           
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X -2 -1 0 1 2 
P(x) 1

6
 1

6
 2

6
 1

6
 1

6
 

2.3.2 Discrete Distribution Function 

In this case, there are a countable number of points x1, x2,…, xn,… and number pi≥0, and p 1ii 1


 


 such 

that F(x) pii : x xi

 


 

If X takes on only a finite number of valuesx1, x2,…, xn,, then the distribution function is given by 

1

1 1 2

1 2 2

1

0;
( );

( ) ( ) ( );
...

( ) ... ( );

n

n n

x x
p x x x x

F x p x p x x x x

p x p x x x

  
     



    

 

For example, if xi is just the integer i so that P(X=i) =pi; i=1,2,3… Then F(x) is a step function having 
jump pi at i, and being constant between each pair of consecutive integers. 

 

 

Theorem: Prove that P(xj) = P(X=xj) = F(xj)- F(xj-1), where F is the d.f. of X. 

Proof: Let 1 2, ,...x x be the values of a r.v. X. Then, we have 

 F(xj) = P(X≤ xj) = 
j

P(X x )ii 1
 


= 
j

P(x )ii 1



 

F(xj-1) = P(X≤ xj-1) = 
j 1

P(X x )ii 1


 


= 
j 1

P(x )ii 1





 

 F(xj)- F(xj-1) = p(xj) 
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Thus, given the distribution function of discrete random variable, we can compute its probability mass 
function. 

Example 4: A r.v. X has following probability function: 

Values of 
X 

0 1 2 3 4 5 6 7 

P(x) 0 k 2k 2k 3k k2 2k2 7k2+k 

(i) Find k 

(ii) Evaluate P(X<6),P(≥6) and P(0<X<5), 

(iii) P(X≤a)>
1
2 , Find the minimum value of a and 

(iv) Determine the distribution function of X. 

Solution: 

(i) Since 
7

p(x)
x 0



=1,k+2k+2k+3k+ k2 +2k2+7k2= 1 

 10 k2 + 9k-1 = 0 

 (10k -1 )(k + 1) = 0 

 k = 
1

10
 or k = -1 

But since p(x) cannot be negative, k=-1 is rejected. Hence k = 
1

10
. 

(ii) P(X <6) = P(X = 0) + P(X = 1) + … + P(X = 5)  

1 2 2 3 1 81

10 10 10 10 100 100
     

81 19
P(X 6) 1 P(X 6) 1

100 100
         

            P(0 <X <5) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) 

  = 8k = 
4

5
. 

(iii) For P(X ≤a) >
1

2
. The value of  a is 4 

(iv) The distribution function ( )XF x  of X is given in the adjoining table 
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X ( )XF x = P(X≤x) 
0 0 
1 k = 1/10 
2 3k = 3/10 
3 5k = 5/10 
4 8k = 4/5 
5 8k+k2  = 81/100 
6 8k+3k2  = 83/100 
7 9k+10k2 = 1 

Example 5: If p(x) = 

x
 , x  1, 2,3, 4,5

15
                               
0,  elsewhere








 

Find (i) P{X=1 or 2} and  

        (ii) 
1 5

P{ X | X 1}
2 2
    

Solution: (i) P{X = 1 or 2} = P(X = 1) + P(X = 2) 

                                         =
1 2 1

15 15 5
 

 

(ii) 
1 5

P{ X | X 1}
2 2
   = 

   
1 5

P ( X ) (X 1)
P (X 1or2) (X 1)2 2

P(X 1) P(X 1)

   
  


 

 

2
P(X 2) 115

11 P(X 1) 71 ( )
15


  

  
. 

Problems: 

1. Find the probability distribution of the number of heads when three fair coins are tossed 
simultaneously.  

2. For the following probability distribution of a discrete r.v. X, find 
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(i) the constant c 

(ii) [ 3]P X  and 

(iii) [1 4]P X   

3. Two dice are rolled. Let X denotes the random variable which counts the total number of points 
on the upturned faces. Construct a table giving the non-zero values of the probability mass 
function and draw the probability curve. Also, find the distribution function of X. 

4. An urn contains 5 white and 4 red balls are drawn one by one with replacement. Find the 
probability distribution of the number of red balls. 

5. Four defective milk pouches are accidentally mixed with sixteen good ones and by looking at 
them it is not possible to differentiate between them. Three milk pouches are drawn at random 
from the lot. Find the probability distribution of X, the number of defective milk pouches. 

6. An experiment consists of three independent tosses of a fair coin. Let X = the number of heads,Y 
= the number of head runs, Z = the length of head runs, a head run being defined as consecutive 
occurrence of at least two heads, its length then being the number of heads occurring together in 
three tosses of the coin. 

Find the probability function of  

(i) X  

(ii) Y  

(iii)  Z  

(iv)  X+Y  

(v)  XY  

and constructed probability tables and draw their probability charts. 

2.4. Continuous random variable 

A random variable is said to be continuous if it can assume an infinite and uncountable set of values 
(integrals as well as fractional) between certain limits. A continuous random variable is in which 
different values cannot be put in one to one correspondence with a set of positive integers. For example, 
weight of calf at the age of six months might take any possible value in the interval of 160 kg to 260 kg, 
say 189 kg or 189.4356 kg; likewise milk yield of cows in a herd etc. In case of continuous random 
variable, we usually talk of values in a particular interval. Continuous random variables represent 
measured data. 

Example: age, height, weight  

X 0 1 2 3 4 5 
P(x) 0 c C 2c 3c c 
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2.4.1 ProbabilityDensity Function 

In case of a continuous random variable X, we talk about probability in an interval (x,x+ x ). If f(x) is a 

continuous function of x, f(x) dx gives the probability i.e. 
P(x X x x)

lim
x 0 x

   

  
, 

 that the random variable X, takes value in a small interval of magnitude dx i.e. 

   and 
2 2
dx dxx x       

   
, then f(x) is called the probability density function (p.d.f.) of a random 

variable X. It is also known as frequency function because it also gives the proportion of units lying in 

theinterval    and 
2 2
dx dxx x       

   
. If x has range [ , ]  , ( ) 0  [ , ]   and ( ) 1f x x f x dx





      

The expression f(x) dx usually written as dF(x) is known as the probability differential and the curve y= 
f(x) is known as the probability density curve. 

Remarks: 1. The probability density function has the same property as the probability mass function. So 
( ) 0f x   and sum of the probabilities of all possible values that random variable can take, has to be 1. 

2. An essential property of a continuous r.v. is that there is zero probability that it takes any specified 
numerical values, but the probability that it takes a value in specified intervals is non zero and is 
calculable as a definite integral of the probability density function of the r.v. and hence the probability 
that a continuous r.v. X will lie between two values a and b is given by 

P(a<X<b) = 
b

f (x)dx
a
  

It is to be noted that in case of discrete r.v., the probability at a point can be zero while in case of 
continuous r.v., it is zero. 

Properties: p.d.f. of a r.v. X, usually denoted by fX(x) or simply by f(x) has the following properties 

(i) f(x)≥0 

(ii) f (x)dx 1





 

(iii) The probability P(E) given by P(E) = f (x)
E
 is well defined for any event E. 

2.4.2 Various Measures of Central Tendency, Dispersion, Skewness and Kurtosis for Continuous 
Probability Distribution 

The formulae for these measures in case of discrete frequency distribution can be easily extended to the 

case of continuous probability distribution by simply replacing Pi = 
f i
N

by f(x)dx , xi by x and the 

summation over ‘i’ by integration over the specified range of the variable X. 
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Let fX(x) or f(x) be the p.d.f of a r.v. X, where X is defined from a to b. Then 

(i) Arithmetic Mean =
b

xf (x)
a
   (3) 

(ii) Harmonic mean H is given by : 

b1 1
f (x)dx

aH x
     (4) 

(iii) Geometric Mean  G is given by: 

= logG = 
b

log x.f (x)dx
a
      (5) 

(iv) Moment about origin, r

b rx f (x)dx
a

'    (6) 

Moment about the point X = A, r

b r
f (x)dx(x A)a

'                              (6a) 

Moment about Mean, r

b r
f (x)dx(x mean)a

                                       (6b) 

In particular from (3) and (6) 

1

b
Mean xf (x)dx

a
'     

2
2

b
f (x)dx

a
' x   

Hence  2
2 2

2b b2- x f (x)dx - xf (x)dx2
a a

' '            (6c) 

From (6) on putting r = 3 and 4 respectively, we get the values of 3' and 4' . Then third and fourth 

order moment is given by: 

3
3 2 1 3

2 4
4 3 1 1 2 1

3 23
4 6 34  

' ' ' '
' ' ' ' ' '

   




   

   
     

                        (6d) 
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(v) Median:  

If M is the median, then 
M b 1f (x)dx f (x)dx

2a M
    

Thus solving for M, we get the value of median. 

(vi) Mean Deviation: 

Mean deviation about the mean 1'  is given by  

M.D. = 
b

x meanf (x)dx
a

  

In general, mean deviation about an average ‘A’ is given b: 

M.D. about ‘A’ =   
b

x Af (x)dx
a

  

(vii)  Quartiles and Deciles:  Q1 and Q3 are given by the equations 

Q1 1
f (x)dx

a 4
  and  

Q3 3
f (x)dx

a 4
  

            Di = ith decile is given by:  

iD i
f (x)dx ;i 1,2,...,9

a 10
   

(viii) Mode: Mode is the value of x for which f(x) is maximum. Mode is thus the solution of 
'( ) 0f x  , ''( ) 0f x   provided it lies in [a, b]. 

Example 6: The diameter of an electric cable, say X is assumed to be a continuous random variable 
with p.d.f.:  

f(x) = 6x (1-x)        if 0 ≤x ≤1 

(i) Check that f(x) is p.d.f. and 

(ii) Determine a number b s.t. P(X < b) = P(X >b) 

Solution: (i) Obviously, for 0 ≤x ≤1, f(x) ≥ 0 

Now  
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1 1 1 2f (x)dx 6 x(1 x)dx 6 (x x )dx 1
0 0 0

        

Hence f(x) is the p.d.f. of r.v. X. 

(ii) P(X<b) = P(X>b) 
b 1

f (x)dx f (x)dx
0 b

    

b 1
6 x(1 x)dx 6 x(1 x)dx

0 b
      


b 12 3 2 3

x x x x

2 3 2 30 b
   

2 3 2 31 1b b b b
2 3 2 3 2 3

2 3 2 33b 2b (1 3b 2b )
3 2 24b 6b 1 0 (2b 1)(2b 2b 1) 0

                        

    

        

 

∴ 2b-1 = 0 1b
2

   

 or (2b2-2b-1) = 0 
2 4 8 1 3

b
4 2

  
    

Hence b = 1/2 is the only real value lying between 0 and 1. 

Example 7: Calculate the standard deviation and mean deviation from mean if the frequency function 
f(x) has the form: 

f(x) = 
3 2x

for  2 x 4  
1

,
, otherwise

0
8


 





 

Solution: We have,  

Mean = 

 

1

2

4 3 2x 83
xf (x)dx x( )dx

2 18 27
4 3 2x 882 2x f (x)dx x ( )dx
2 18 9

'

'

 
   


 
    






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∴ Variance = 2
2 1

288 23983
279 729

' '  
    

 

 
   

 
 

 

239
S.D. 0.57

729
    

Mean Deviation = 

 

4 83 3 2x
x xf (x)dx x dx

2 27 18

83/27 483 3 2x 83 3 2x
x dx x dx 0.49

2 83/2727 18 27 18

 
 

   


 
     

 
 
 

   
   
   

 

(on simplification) 

Hence mean deviation and standard deviation are 0.49 and 0.57 respectively. 

Problems: 

1. A continuous r.v. X has a p.d.ff(x) = 3x2,0<x≤1, find a and b such that 

(i) P(X≤a) = P(X>a)  

(ii)  P(X>b) = 0.05 

2. Suppose that the life in hours of a certain part of radio tube is a continuous r.v. X with p.d.f. 
given by: 

                                   f(x) = 2

0,

100

oth

, whe

erwi

n x 10

e

0

s
x






 

(i) What is the probability that none of three such tubes in a given radio set will have to be 
replaced during the first 150 hours of operations? 

(ii) What is the probability that a tube will last than 200 hours if it is known that the tube is still 
functioning after 150 hours of service? 

(iii) What is the maximum number of tubes that may be inserted into a set so that there is a 
probability of 0.5 that after 150 hours of service, all of them are still functioning? 

3.  The kms X in thousands of kms which car owners get with a certain kind of tyre is a random 
variable having probability density function: 
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 f(x) = 
1 x

20 ,  for  x 0

0, otherwise

 e
20








 

     Find the probability that one of these tyres will last  

(i) atmost 10,000 kms 

(ii) anywhere from 16,000 to 24,000 kms 

(iii) atleast 30,000 kms. 

2.4.3 Continuous Distribution Function 

Definition: If X is a continuous random variable with the p.d.f. f(x), then the function 

( ) [ ] ( ) ,
x

F x P X x f t dt xX      


 

is called the continuous distribution function (d.f.) or sometimes the cumulative distribution function 
(c.d.f.) of the random variable X. 

As we know  

 

0

0

0

[ ]( ) lim

[ ] [ ]lim

( ) ( )lim

( ) '( )
( )

Here,  is known as the probability differential.

So, ( ) ( ) .

x

x

x

x

P x X x xf x
x

P X x x P X x
x

F x x F x
x

f x F x
dF f x dx

dF

F x f x dx
























  


   


 


 


 

 

 Properties:  

(i) 0≤F(x)≤1,-∞<x<∞ 

(ii) F(x) is non-decreasing function of x 

(iii)
x

F( ) F(x) f (x)dx f (x)dx 0lim limx x


     

  
x

F( ) F(x) f (x)dx f (x)dx 1lim limx x

0 F(x) 1


     

  

  
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(iv) F(x) is a continuous function of x from the right. 

(v) The points of discontinuity of F(x) are at the most countable. 

(vi) P(a≤X≤b) =
b b a

f (x)dx f (x)dx f (x)dx P(X b) P(X a) F(b) F(a)
a

         
 

 

(vii) '( ) ( ) ( ) ( )dFF x f x dF x f x dx
dx

     

dF(x) is known as probability differential of X. 

Example 8: Verify that the following is a distribution function: 

          F(x) = 

0, x a
1 x( 1), a x a
2 a

x a1,


   








 

Solution: Obviously the properties (i), (ii), (iii) and (iv) are satisfied. Also we observe that F(x) is 
continuous at x=a and x= -a as well. 

Now 

1
d , a x a

F(x) 2a
dx 0, otherwise

  





 

      = f(x) 

In order that F(x) is a distribution function, f(x) must be a p.d.f. Thus we have to show that 

f (x)dx 1

a a1
f (x)dx f (x)dx 1.dx 1

a a2a







    
  

 

HenceF(x) is a distribution function. 

Example 9: The diameter, says X of an electric cable, is assumed to be a continuous r.v. with p.d.f.: 

f(x) = 6x(1-x)      ;  0≤x≤1 

(i) Obtained an expression for the c.d.f. of X. 

(ii) Compute 
1 1 2P X | X
2 3 3

    
 

. 
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Solution: 

(i) F(x) = 

0, if x 0
x 2 36t(1 t)dt ( ), 0 x 13x 2x
0
1, if x 1



    









 

(ii) 
1

P(X
2

 |
1 2

X )
3 3
   =

1/21 1
11P( X ) 6x(1 x)dx 113 2 1/3 54

2/31 2 13 266x(1 x)dxP( X ) 271/33 3

  
  

 

. 

Problems:  

1.  Let X be a continuous r.v. with p.d.f. given by: 

       f(x)= 

kx, 0 x 1
k, 1 x 2

kx 3k, 2 x 3
0, elsewhere

 
 

   







 

(i) Determine the constant k 

(ii) Determine F(x), the c.d.f. and  

(iii) If X1, X2 and X3 are three independent observations from X, what is the probability that 
exactly one of these three numbers is larger than 1.5? 

2. A petrol pump is supplied with petrol once a day. If its daily volume of sales (X) in thousands of 
liters is distributed by: 

       f (x) = 5(1-x)4   ; 0≤x≤1 

What must be the capacity of its tank in order that the probability that its supply will be exhausted in 
a given day shall be 0.01? 

3. Let X be a continuous r.v. with p.d.f. given by: 

; 0 1
2
1 ; 1 2

( ) 2
1 (3 ); 2 3
2

0;

x x

x
f x

x x

elsewhere

  

   


  



 

Determine F(x). 
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2.5 Two-Dimensional Random Variable 

Let S be a sample space associated with a random experiment E. Let X and Y be two random variables 
defined on S, then the pair (X,Y) is called a two-dimensional random variable. The value of (X,Y) at a 
point is given by the ordered pair of real numbers (X(s), Y(s)) = (x, y) where X(s) = x, Y(s) = y. 
The probability of the event {X ≤ a, Y ≤ b} will be denoted by P (X ≤a, Y ≤b) 

Let A = {a <X ≤b}  
      B = {c <Y ≤d} be two event, then the event  

      {a <X ≤b, c <Y ≤d} = {a <X ≤b}  {c <Y ≤d} 

                          = A B  

∴    P {a <X ≤b, c <Y ≤d} = P ( A B ) 
Remarks:  
1. A two-dimensional r.v. is called discrete if it takes at most a countable number of points in R2 

2. A two-dimensional r.v. is called continuous if it takes infinite or uncountable number of points in R2. 
2.5.1 Joint Probability Mass Function of Two-Dimensional Random Variable 

 Let X and Y be r.v. on a sample space S with respective image sets  

     X(S) = 1 2 3 n(x ,x ,x ,...,x ) and Y(S) =  1 2 3 my , y , y ,..., y  

We make the product set  

X(S) Y(S) { , , ,..., } { , , ,..., }X X X X Y Y Y Y1 2 3 n 1 2 3 m
    into a probability space. 

The function p on X (S) Y (S)  defined as 

( , )p P X x Y y p x yij i j i j
      
 

 

 is called the joint probability function of X and Y and is usually represented in the form of the 
following table: 

             Y 
X 1y 2y ……………….. jy ……................   my  Total 

1x  

2x  

.. 

ix  

. 

. 

. 

nx  

11p 12p   ..………………….. 1 jp ………….. 1mp  

21 22p p     . …………  2 jp …………… 2mp  
. 
. 

1 2i ip p       . …………… ijp ……………… imp  
. 
. 
. 1 2n np p ………… njp ……………… nmp  

1p . 

2p . 

. 

. 

ip . 

. 

. 

. .np  

Total 
1.p 2.p ...................... . jp …………….. .mp  1 
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Definition:  If (X, Y) is a two-dimensional discrete r.v., then the joint discrete function of (X, Y) also 

called the joint probability mass function of (X, Y) denoted by XYp  is defined as: 

XYp (xi,yj ) = P(X= ix ,Y= yj) ;   for a value (xi,yj ) of (X,Y) and   

XYp  (xi,yj ) = 0                     ;  otherwise  

and satisfying the following properties:  

1. p( , ) 0i jx y   

2. It may be noted that 
XY ( , ) 1yx i jp    

(a) Marginal Probability Function 

 Let (X,Y) be a discrete two-dimensional r.v. Then the probability distribution of X is determined as 
follows:  

X

2 m

XY

p (x ) P(X x )i i
P(X x Y y ) P(X x Y y ) ... P(X x Y y )i 1 i i

m m
... ( , )p p p p p p y pxi j i.j 1 j 1i1 i2 i3 im ij

 

            

        
 

 

and is known as marginal probability mass function or discrete marginal density function of X. 

Also 
n n m

... ( , ) 1p p p p p p yxii. 1. 2. 3. m. ij ji 1 i 1 j 1
        
  

 

Similarly, 

j

n n
p ( ) P (Y ) ( , )y p p y px ij ij j . jY i 1 i 1

y      
 

 

which is the marginal probability mass function of Y. 

(b) Conditional Probability Function 

Definition: Let (X,Y) be a discrete two-dimensional r.v. Then, the conditional probability density 
function or the conditional probability mass function of X, given Y = y denoted by | ( | )X Yp x y  is defined 

as: 

| ( | )X Yp x y  = 
P(X x, Y y)

P(Y y)

 


 , provided P(Y=y)≠0 

A necessary and sufficient condition for the discrete r.v. X and Y to be independent is:  
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P(X= xi,Y= yj ) =P(X= xi )P(Y= yj ) for all values (xi ,yj ) of (X,Y). 

Example 10: The following table represents the joint probability distribution of the discrete r.v. (X,Y). 

         Y 
X 

1 2 

1 0.1 0.2 
2 0.1 0.3 
3 0.2 0.1 

 

Find:  

(i) The marginal distribution. 

(ii) The conditional distribution of X given Y=1 

(iii) [( ) 4]P X Y   

Solution: (i) To find the marginal distribution, we have to find the marginal totals, 

         Y 
 
X 

1 2 p(x) 
(Totals) 

1 0.1 0.2 0.3 
2 0.1 0.3 0.4 
3 0.2 0.1 0.3 
P(y) 0.4 0.6 1 

 

Thus the marginal probability distribution of X is  

X 1 2 3 
p(x) 0.3 0.4 0.3 

 

and the marginal probability distribution of Y is  

Y 1 2 
p(x) 0.4 0.6 

 

(i) As P[X=1|Y=1]=
P[X=1,Y=1] 0.1 1

P[ 1] 0.4 4Y
 


 

 P[X=2|Y=1]=
P[X=2,Y=1] 0.1 1

P[ 1] 0.4 4Y
 


 

 P[X=3|Y=1]=
P[X=3,Y=1] 0.2 1

P[ 1] 0.4 2Y
 


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The conditional distribution of X given Y=1 is 

X 1 2 3 

P[X=x|Y=1] 1
4

 1
4

 1
2

 

(ii) As the values of (X,Y) which satisfy X+Y<4 are (1,1),(1,2) and (2,1) only. 

[( ) 4] [ 1, 1] [ 1, 2] [ 2, 1]
0.1 0.2 0.1 0.4

P X Y P X Y P X Y P X Y           
   

 

Problem: 

1. Two discrete random variables X and Y have 

2 1 1 5[ 0, 0] , [ 0, 1] , [ 1, 0] , and [ 1, 1] .
9 9 9 9

P X Y P X Y P X Y P X Y            Examine 

whether X and Y are independent? 

2.5.2 Joint Density Function 

From the joint distribution function ( , )XYF x y  of two-dimensional continuous r.v., we get the joint 
probability density function by differentiation as follow: 

( , )XYf x y  = 
2 ( , )( , )

lim
0
0

P x X x x y Y y yF x y
x y x x y

y

 

  


      
  



 

We will discuss the two-dimensional distribution function later. 

(a) Marginal Density Function 

The marginal density function of X and Y can be obtained in the following manner also: 

( )
( ) ( , )

d xF Xx x y dyff XYX
dx


  


 

( )
( ) ( , )

d yF Yy x y dxff XYY
dy


  


 

(b) Conditional Probability Density Function 

The conditional probability density function of Y given X, for two r.v. X and Y which are jointly 
continuously distributed is defined as follows , for two real numbers x and y: 

|
|

( | )
( | ) Y X

Y X

F y x
f y x

y




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Remark: If we know the joint p.d.f. of two-dimensional random variable, we can find individual density 
function but converse is not true. 

2.5.3 Two-Dimensional Distribution Function 

The distribution function of the two-dimensional r.v. (X,Y) is real valued function F defined for all x 
and y by the relation: 

FXY(x, y) = P(X ≤x, Y ≤y) 

Properties of Joint Distribution Function 

(i)    , 0 , , ( , ) 1F y F x F        

(ii) If the density function
2

( , ) is continuous, ( , )Ff x y f x y
x y



 

.  

where f(x,y) is the joint density function which we will discuss later.  

(a) Marginal Distribution Function 

Marginal distribution function of X and Y w.r.t the joint distribution function FXY(x, y) 

FX(x) = P(X ≤x) = P(X ≤x, Y <∞) = lim ( , )FXY x yy 
= FXY(x, ∞)  

Similarly 

FY(y) = P(Y ≤y) = P(X <∞,Y ≤y) =    ,l m   ,i F x y FXY XY yx    

where FX(x) is termed as marginal distribution function of X and FY(y) is called marginal distribution 
function of Y w.r.t. the joint marginal function FXY(x,y). 

In the case of jointly discrete random variable the marginal distribution function are given as 

FX(x) = ( , )P X x Y y
y

   

FY(y) = ( , )P X x Y y
x

   

Similarly in the case of jointly continuous r.v., the marginal distribution functions are given as 

FX(x) = { ( , ) }
x

x y dy dxf XY


 
 

 

FY(y) = { ( , ) }
y

x y dx dyf XY


 
 

 

(b) Conditional Distribution Function 

The joint distribution function FXY(x,y) for any real number x and y is given by: 
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FXY (x,y) = P(X≤x,Y≤y) 

Using conditional probabilities we may now write  

( , ) ( | ) ( )XY

x
F x y P A X x dF xX 


 

where A be the event (Y≤y) s.t. the event A is said to occur when Y assumes values upto and inclusive 
of y. 

The conditional distribution function | ( | ) ( | )X YF x y P Y y X x    

Also  

|( , ) ( | ) ( )
x

XY Y X XF x y F y x dF x


   

Similarly 

( , ) ( | ) ( )|
y

F x y F x y dF yXY X Y Y 


 

2.5.4 Independent Random Variables 

 Two random variables X and Y with joint p.d.f. (p.m.f) fXY(x,y) and marginal p.d.f.’s (p.m.f’s) fX(s) and 

( )Yg y  respectively are said to be stochastically independent iff  

( , ) ( ) ( )XY X Yf x y f x g y  

2.5.5 Generalization to n-Dimensional Random Variable 

(A) Joint and Marginal Probability Mass Function 

(I) The joint p.m.f. of (X1, X2,…,Xn) is defined as  

1 2, ... 1 2 1 1 2 2( , ,... ) [ , ,..., ]

[ ( )]
1

nX X X n n n

i i

p x x x P X x X x X x

n
P X x

i

   

  


 

where  

(i) p(x1, x2, x3,…, xn)≥0  ( , , ... )1 2
nx x x Rn   and 

(ii)  ,  ,  , ,  1 2 3, , , , 1 2 3
1p x x x xn

x x x xn 
 
 


   
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(II) The marginal p.m.f. of any r.v. say Xi is                                   

( )
iX ip x   ,  ,  , ,  1 2 3, , , , 1 2 3

iexcept

p x x x xn

x

x x x xn 
 
 
 
 
 




  

(B) Joint and Marginal Probability Density Function 

(I) The joint p.d.f. of (X1, X2, X3,…, Xn) is given by 

 

where  

(i)  f(x1, x2, x3,…, xn)≥0  1 2( , , ... )n
nx x x R   

(ii) 1 2 1 2... ( , , ... ) ... 1n nf x x x dx dx dx
  

  
  

 

(II) The marginal p.d.f. of any variable says Xi (integral over all variables except xi) 

( ) ... ( , ,..., ) ... ...1 2 1 2 1 1f f x x x dx dx dx dx dxxiX n i i ni

  
     
 

 

Example 11: A random observation on a bivariate population (X,Y) can yield one of the following pairs 
of values with probabilities noted against them: 

For each observation pair Probability 

(1,1);(2,1);(3,3);(4,3) 

(3,1);(4,1);(1,2);(2,2);(3,2);(4,2);(1,3);(2,3) 

1/20 

1/10 

Find the probability that Y=2 given that X=4. Also find the probability that Y=2. Examine if the two 
events X=4 and Y=2 are independent. 

Solution: P(Y=2) = P{(1,2) (2,2)(3,2) (4,2)} = 4/10 = 2/5 

P(X=4) = P{(4,1) (4,2) (4,3)} = 1 1 1 1
10 10 20 4

    

   
1 2 3

1 2 3,, , ,..., 1
1

2

, , ..., lim
0
0

.

.

.
0

n

n

n i i i iX X X X i

n

x x x x P x X x dxf
dx
dx

dx



       




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P(X=4,Y=2) = P{(4,2)} = 1/10 

1( 4 2) 210( 2 | 4) 1( 4) 54

P X YP Y X
P X
  

    


 

Now P(X=4).P(Y=2) = 1 2 1. ( 4 2)
4 5 10

P X Y      

Hence the events X=4 and Y=2 are independent. 

Example 12: For the adjoining bivariate probability distribution of X and Y. 

 

 

 

 

 

 

(i)P(X≤1,Y=2) 

(ii)P(X≤1) 

(iii) P(Y≤3) 

(iv) P(X<3,Y≤4) 

Solution: The marginal distributions are given below: 

          Y 

X       

1 2 3 4 5 6 PX(x) 

0 0 0 1/32 2/32 2/32 3/32 8/32 

1 1/16 1/16 1/8 1/8 1/8 1/8 10/16 

2 1/32 1/32 1/64 1/64 0 2/64 8/64 

PY(y) 3/32 3/32 11/64 13/64 6/32 16/64 p(x ) 1

p(y) 1

 

 
 

(i) P(X≤1,Y=2) = P(X=0,Y=2)+ P(X=1,Y=2) 

                     = 0+
1

16
=

1

16
. 

       Y 

X        

1 2 3 4 5 6 

0 0 0 1/32 2/32 2/32 3/32 

1 1/16 1/16 1/8 1/8 1/8 1/8 

2 1/32 1/32 1/64 1/64 0 2/64 
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(ii) P(X≤1) = P(X=0)+P(X=1) 

               =
8 10 7

32 16 8
   

(iii) P(Y≤3) = P(Y=1)+P(Y=2)+P(Y=3) 

              =
3 3 11 23

32 32 64 64
    

(iv) P(X<3,Y≤4) = P(X=0,Y≤4)+P(X=1,Y≤4)+P(X=2,Y≤4) 

1 2 1 1 1 1 1 1 1 1 9

32 32 16 16 8 8 32 32 64 64 64
          
     
     
     

. 

Example 13: Suppose that two-dimensional continuous r.v. (X,Y) has joint p.d.f given by : 

2 , 0 x 1, 0 y 16x yf (x, y)
, elsewhere0

   





 

(i)Verify that 
11

f (x, y)dxdy 1
00

   

(ii) Find      3 1
P 0 X , Y 2 , P X Y 1 , P X Y and P X 1 Y 2

4 3
        

 
 
   

Solution: (i)

12 11 1 1 1 1 1y2 2 2 3f (x, y)dxdy 6 ydxdy 6 dx 3 dx 1x x x x 00 0 0 0 0 02 0

         

 

(ii) 
3 1

P 0 X , Y 2
4 3

   
 
 
 

=

12 3/43/4 1 3/4 2 3/4 3/48 8 3y 22 2 36 ydxdy 0dxdy 6 dx dx3xx x x 00 0 1 0 01/3 9 9 82 1/3

           

 
1 x211 x 12 2 yP X Y 1 6 ydxdy 6 dxx x

0 0 0 2 0




       
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                        =  1 2 12 dx1 x3x
0 10

  

P(X>Y) = 
x1 x 1 1 3422 26 ydxdy dx dxy 3xx x 00 0 0 0 5

       

   P X 1 Y 2
P X 1 Y 2

P(Y 2)

  
  


 

where   P X 1 Y 2    =  
1 1 1 226 ydxdy 0dxdy 1x
0 0 0 1

      

and  

 

   

1 2
f (x, y)dxdy

0 0
1 1 1 226 ydxdy 0.dxdy 1x
0 0 0 1

P X 1 Y 2
P X 1 Y 2 1

P(Y 2

P Y 2  

)

 

     

  
   









 

Example 14: Let joint distribution of X and Y is given by: 

 22 yx
f (x, y) 4xye

 
    ; x≥0,y≥0 

Test whether X and Y are independent. For the above joint distribution, find the conditional density of X 
given Y=y. 

Solution: Given joint p.d.f. of X and Y is: 

 22 yx
f (x, y) 4xye

 
    ;  x≥0,y≥0 

Marginal density of X is given by: 
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 

X

22 yx
f (x) (x, y)dy 4xye dyfX XY0 0

22 yx4xe ye dy
0

2 dtx t4xe ye
20

2 tx2xe
0
2xf (x) 2xe ; x 0

e

  
  

  

  

 

  

 

Similarly, the marginal p.d.f. of sY is given by  

(y) (x, y)dxf fY XY0
2y2ye ; y 0


 


 

 

Since fXY(x,y) =  fX(x).fY(y), X and Y are independently distributed .  

The conditional distribution of X for given Y is given by: 

 
2f (x, y) xf X x Y y 2xe ; x 0XY (y)f Y

      

Example 15:  If the joint distribution of X and Y is given by: 

 

XY

x y x y ; x 0, y 01 e e e(x, y)
; elsewhere0

F
       






 

(a)  Find the marginal densities of X and Y 

(b) Are X and Y independent? 

(c)  Find  P X 1 Y 1    and   P X Y 1   

Solution: 

(a) The joint p.d.f. of the r.v.’s (X,Y) is given by  

 
 

 
2 x, yF y x yXYf x, y e eXY x y x

           
              (1) 
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                  =
 x y ; x 0, y 0e

; otherwise0

   



 

We have   x yf x, y . f (x )f (y)e eXY X Y
                 (2) 

where 

xf (x) , x 0eX
yf (y) , y 0eY


 


 





                                                     (3) 

(b) From (2) X and Y are independent and from (3) we get marginal p.d.f’s of X and Y. 

(c)  
1 1

P X 1 Y 1 f (x, y)dxdy
0 0

       

                                =   
2

1 1x ydx dye e
0 0

11
e

 
 
  
 

 

 P X Y 1 f (x , y)dxdy
x y 1

    
 

 

   
 

1 1 x 1 1 x (x y)f (x, y)dy dx dy dxe
0 0 0 0
1 x (1 x) 1dy dxe 1 e 1 2e
0

   
    

   
   

 

Problems: 

1. The joint probability distribution of random variables X and Y is given by: 

     1 1 1P X 0,Y 1 ,P X 1,Y 1 ,P X 1,Y 1
3 3 3

          

Find  

(i) Marginal distribution of X and Y and 

(ii) The conditional probability distribution of X given Y=1 

2.  The joint p.d.f. of two r.v.’s X and Y is given by: 

   
9(1 x y)f (x, y) 4 4

2 1 x 1 y

 


 

       ;   0≤x<∞ , 0≤y<∞ 

(i) Find Marginal distribution of X and Y and 

(ii) The conditional probability distribution of Y for X=x. 
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3. Given  

(x y)f (x, y) ; x [0, ) and y [0, )e       

      Are X and Y independent? 

      Find  

(i) P(X>1) 

(ii) P(X<Y|X<2Y) 

(iii) P(1<X+Y<2) 

4. A two-dimensional random variable (X,Y) have the joint density 

8 , 0 1
( , )

0,
xy x y

f x y
otherwise
  

 


 

(i) Find 
1 1
2 4

P X Y     
 

(ii) Find the marginal and conditional distribution 

(iii) Are X and Y independent? 

2.6 Mathematical Expectation 

A very important concept in probability and statistics is that of the mathematical expectation, expected 
value, or briefly the expectation, of a random variable. Let X denotes a discrete random variable which 
assumes values 1 2 3, , ,..., nx x x x with corresponding probabilities 1 2 3, , ,..., np p p p  where 

1 2 3 ... 1np p p p     , the mathematical expectation ofX or simply the expectation of X, denoted by 
E(X) is defined as: 

1 1 2 2 3 3
1 1

[ ] ...
n n

n n i i
i i

E X x p x p x p x p x p
 

         

i.e. it is the sum of the product of different possible values of x and the corresponding probabilities.  

The mathematical expression for computing continuous r.v. X with probability density function (p.d.f.) 
f(x) is, however as follow 

  ( )E X xf x dx



  

where   ( ) 1f x dx




  
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Hence, mathematical expectation of a random variable is equal to its arithmetic mean. The mean, or 
expectation of X gives a single value that acts as a representative or average of the values of X,and for 
this reason, it is often called a measure of central tendency. It is also denoted by  . 

Example 16: Find the expectation of the number on an unbiased die when thrown. 

Solution: Let X be the random variable representing the number on a die when thrown. 

Therefore X can take the values 1,2,3,4,5,6, with 

1[ 1] [ 2] [ 3] [ 4] [ 5] [ 6]
6

P X P X P X P X P X P X             

Thus, the probability distribution of X is given by 

X: 1  2 3 4 5 6 

p(x): 1
6

 1
6

 1
6

 1
6

 1
6

 1
6

 

Hence, the expectation of number on the die is  
6

1

1 1 1 1 1 1 21 7( ) 1 2 3 4 5 6
6 6 6 6 6 6 6 2i i

i
E X x p



               . 

Problems:  

1. Two cards are drawn successively with replacement from a well-shuffled pack of 52 cards. Find 
the expected value for the number of aces. 

2. The distribution of a continuous random variable X is defined by  
3

3

; 0 1
( ) (2 ) ; 1 2

0;

x x
f x x x

elsewhere

  
   



 

Obtain the expected value of X. 

3. A fair coin is tossed until a tail appears. What is the expectation of the number of tosses? 

Expected Value of Function of a Random Variable 

Consider ar.v. X with p.d.f. (p.m.f.) f(x) and distribution function F(x). If g(.) is a function of r.v. X, then 
we define 

 ( ) ( ) ( )E g X g x f x dx


 


 (for continuous r.v.)                (1) 

 ( ) ( ) ( )E g X g x f x
x

   (for discrete r.v. ) 
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Note: For higher dimensions, the above results are ( ) ( )XE X xf x dx



   and ( ) ( )YE Y yf y dy




   

where   and X Yf f  are marginal density function. If X and Y have a joint p.d.f. f(x, y) and Z = h(x, y) is 

a r.v. for some function h and if E(Z) exists then  

( ) ( , ) ( , )E Z h x y f x y dxdy
 

  
 

                                                 (3) 

( ) ( , ) ( , )E Z h x y f x y
yx
                                                             (3a) 

Particular Case:  

1. If we take ( ) rg X X , r being a positive integer in eq(1) 

  ( ) 'r
rrE f x dxxX 


 


    (about origin) 

where 'r , the rth moment of the probability distribution 

'1 (about origin) = E(X) = mean or  x                                     (4) 

'2 (about origin) = E(X2) and  

   22 2' ' ( ) ( )2 2 1 E X E X       (4a) 

2. If g(X) = [X-E(X)]r = (X- X )r then from (1) 

     ( ) ( )( ) ( )
rr r

E f x dx f x dxX E X x E X x x
 

   
 

  

which is r , the rth moment about mean put r=2 

   2
( )( )2

r
E f x dxx xX E X


   


 

3. Taking g(x) = constant = c in (1) 

E(c) = ( ) ( ) ( )E c cf x dx c f x dx c
 

   
 

 

E(c) = c 
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Properties of Expectation 

Property 1: Addition Theorem of Expectation 

If X and Y are random variables, then E(X+Y) = E(X) + E(Y), provided all the expectations exist. 

Proof: By definition 

( )

( ) ( )

x
E X xf dx

E Y y dyyf Y


 



 


 

where fX(x) and fY(y) are marginal p.d.f. 

( ) ( , )( )E X Y x y dxdyx y f XY
 

     
 

                      = ( , )XYxf x y dxdy
 
 
 

+ ( , )XYyf x y dxdy
 
 
 

 

= ( , )
XY

x x y dy dxf



 

 
  

+ ( , )
XY

y x y dx dyf



 

 
  

 

     = ( )Xxf x dx




+ ( )yyf y dy




 

     = E(X) + E(Y) 

Hence proved. 

Generalization: If X1, X2, X3, …, Xn are random variables then 

E(X1+X2+X3+…+Xn) = E(X1) + E(X2) + E(X3) +…+ E(Xn) 

 i.e.  
1 1

n n
E EX Xi ii i
      

, if all the expectations exist. 

Property 2: Multiplication Theorem of Expectations 

If X and Y are independent random variables then 

                               E(XY) = E(X).E(Y) 

Proof: ( ) ( , )E XY xyf x y dxdyXY
 

  


 

                  = ( ) ( )xyf x f y dxdyX Y
 
 

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                 =  ( ) ( )X Yxf x dx yf y dy




 

              =   E(X)E(Y), provided X and Y are independent. 

Generalization: If X1, X2, X3,…,Xn are independent random variables then 

  E(X1X2X3…Xn) = E(X1)E(X2)E(X3)…E(Xn) i.e. 

( )
1 1

n n
E E X iX ii i
      

, provided all the expectations exist. 

Property 3: If X is a r.v. and ‘a’ is constant, then 

(i) E[a h(X)] = a E[h(X)] 

(ii) E[h(X) + a] = E[h(X)] + a 

where h(X) , a function of X is a r.v. and all the expectations exist. 

 Property 4: If X is a r.v., a and b are constants, then 

      E(aX + b) = aE(X) + b, provided all the expectations exist. 

Property 5: Expectation of a Linear Combination of Random Variable 

If X1, X2, X3,…, Xn be any random variables and 1 2 3, , ..., na a a a  are n constants, then 

 
1 1 ii

n n
E a Ea X X iii i
      

, provided all the expectations exist. 

Property 6: If X ≥0 then E(X) ≥0 

Property 7: If X and Y are two random variables s.t. Y ≤X then E(Y) ≤E(X), provided all the 
expectations exist. 

Property 8: If 'r exist, then 's exist for all 1 ≤s ≤r 

Mathematically, If E (Xr) exists, then E (Xs) exist for all 1 ≤s ≤r i.e.E(Xr)<∞E(Xs)<∞ for all 1≤s≤r. 

Example 17: Given the following probability distribution 

X -2 -1 0 1 2 

p(x) 0.25 0.30 0 0.30 0.25 

Find (i) E(X) (ii) E(2X+3) (iii) E(X2) 
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Solution:  

(i)  E(X) = 
5

...1 1 2 2 5 51
x p x p x p x pi ii

   


 

                    = (-2)(0.15) + (-1)(0.30) + (0)(0) + (1)(0.30) + (2)(0.25) 

                    = -0.3-0.3+0.3+0.5 = 0.2 

(ii) E(2X+3) = 2E(X)+3 = 2(0.2)+3 = 0.4+3 = 3.4 

(iii) E(X2) = 2 2 2 2
1 1 2 2 5 5

5
...

1 i ix p x p x p x p
i

   


 

          = (-2)2(0.15) + (-1)2(0.30) + (0)2(0) + (1)2(0.30) + (2)2(0.25) 

          = 0.6 + 0.3 + 0 + 0.3 + 1 = 2.2. 

Problems:  

1. If X is random variable with mean   and standard deviation   then what is the expectation of
XZ 



 ? 

2. Two cards are drawn one by one with replacement from 8 cards numbered from 1 to 8. Find the 
expectation of the product of the numbers on the drawn cards. 

2.7 Variance and Covariance 

The variance of a r.v. is defined by 
2Var( ) [( ) ]X E X    

The variance is a nonnegative number. The positive square root of the variance is called the standard 
deviation and is given by 

2( ) [( ) ]X Var X E X     

If X is a discrete random variable taking the values 1 2, ,..., nx x x  and having probability function p(x), 
then variance is given by 

Var(X) = 2

1
( ) ( )

n

i i
i

x p x


  

If X is a continuous random variable having density function f(x), then the variance is given by 

Var(X) = 2( ) ( )x f x dx




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Remark: The variance (or the standard deviation) is a measure of the dispersion, or scatter, of the 
values of the random variable about the mean. If the values tend to be concentrated near the mean, the 
variance is small; while if the values tend to be distributed far from the mean, the variance is large. 

Theorem: If X is a r.v., then V(aX + b) = a2V(X), where a and b are constants 

Proof: Let Y = aX + b, then E(Y) = aE(X) + b 

Y - E(Y) = a[X - E(X)] 

 Squaring and taking expectation of both sides we get 

E[Y - E(Y)]2 = a2E[X - E(X)]2 

 V(Y) = a2V(X) or V (aX + b) = a2V(X), where V(X) is written for variance of X. 

Cor.  

(i) If b = 0, then V(aX) = a2V(X) 

Variance is not independent of change of scale. 

(ii) If a = 0, then V(b) = 0 

Variance of a constant is zero. 

(iii) If a = 1, then V(X + b) = V(X) 

Variance is independent of change of origin. 

Example 18: If X and Y are independent random variable with variance 2 and 3 respectively. Find the 
variance of 3X+4Y. 

Solution: V (3X+4Y)=9V(X)+16V(Y) 

   =9*2+16*3=66 

Problem: 

Suppose that X is a random variable for which E(X) = 10 and V(X) = 25. Find the positive values of a 
and b such that Y=aX-b has expectation 0 and variance 1. 

Covariance:  

If X and Y are two random variables, then covariance between them is defined as 

    , ( ) ( )Cov X Y E X E X Y E Y      

which can be simplified as 

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

E XY XE Y YE X E X E Y
E XY E Y E X E X E Y E X E Y
E XY E X E Y

   

   
 
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Cor. 

If X and Y are independent then E(XY) = E(X)E(Y) and hence Cov(X, Y) = 0 

 Cov (aX, bY) = ab Cov(X, Y) 

 Cov (X + a, Y + b) = Cov(X, Y) 

 Cov (aX + b, cY + d) = ac Cov(X, Y) 

 Cov (X + Y, Z) = Cov(X, Z) + Cov(Y, Z) 

Variance of a Linear Combination of Random Variable 

LetX1, X2, X3,…,Xn be n random variables then 

2 ( ) 2 ( , )
1 1 11

i i i i i j

nnn n
V a X a V X a a Cov X Xi ji i ji

i j

         


 

Proof: Let 1 1 2 2 ... n nU a X a X a X     so that 

1 1 2 2( ) ( ) ( ) ... ( )n nE U a E X a E X a E X     

Squaring and taking expectation on both sides, we get 

     ( ) ( ) ( ) ... ( )1 1 1 2 22
U E U a X E X a E X a EX X Xn nn         

       2 2 2
1 21 1 2 2

2 2 2 2...( ) ( ) ( ) ( )n n nE a E a E a EU E U X E X X E X X E X           

 2 ( , )
1 1

n n
a a Cov X Xi ji ji j

i j

  
 



 

2 2 2
1 1 2 2( ) ( ) ( ) ... ( )n nV U a V X a V X a V X    2 ( , )

1 1

n n
a a Cov X Xi ji ji j

i j

  
 



 

Hence proved. 

Example 19:Two unbiased dice are thrown. Find the expected values of the sum of the numbers on 
them. 

Solution: The probability function of X (the sum of numbers obtained on two dice) is  

Value of X: x 2 3 4 5 6 7 8 9 10 11 12 

Probability 1
36

 2
36

 3
36

 4
36

 5
36

 6
36

 5
36

 4
36

 3
36

 2
36

 1
36
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( ) i iE X p x
i

   

 

1 2 3 2 12 3 4 ... 11 12
36 36 36 36 36

1
2 6 12 20 30 42 40 36 30 22 12

36
252

7
36

          

          

 

 

Example 20: A gamester has a disc with a freely revolving needle. The disc is divided into 20 equal 
sectors by thin lines and the sectors are marked 0, 1, 2,…,19. The gamester treats 5 or any multiple of 5 
as lucky numbers and zero as a special lucky number. He allows a player to whirl the needle on a charge 
of 10 paise. When the needle stops at the lucky number the gamester pays to the player 5 times of the 
sum charged. Is the game fair? What is the expectation of the player? 

Solution:  

Event Favorable p(x) Player’s Gain (x) 

Lucky number 5,10,15 3
2 0

 20-10 = 10p 

Special lucky number 0 1
2 0

 50-10 = 40p 

Other number 1,2,3,4,6,7,8,9,11,12,13,14, 

16,17,18,19 

1 6
2 0

 -10p 

3 1 16( ) 10 40 10
10 10 10

E X      
9 0
2

    

i.e. the game is not fair. 

Example 21: A coin is tossed until a head appears. What is the expectation of the number of tosses 
required? 

Solution: Let X denote the number of tosses required to get the first head. Then X can materialize in the 
following ways: 
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Event X Probability, p(x) 
H 1 1

2
 

TH 2 1 1 1
2 2 4
   

TTH 3 1 1 1 1
2 2 2 8
    

. 

. 

. 

. 

. 

. 

. 

. 

. 

1 1 1 1( ) ( ) 1 2 3 4 ...
2 4 8 161

E X xp x
x


          


                           (1) 

This is an arithmetic-geometric series with ratio of GP being r = 1
2

 

Now 

1 1 1 11. 2. 3. 4. ...
2 4 8 16

1 1 12. 3. ...
2 4 8 16

1 1 1 1 11 ...
2 2 4 8 16

1
1 2 112 1

2

S

S

S

S

    

   

        
 

  


 

2S   

Thus, from (1) E(X) = 2. 

Example 22: Two random variables X and Y have the following joint probability density function:
2 ;0 1,0 1

( , )
0;

x y x y
f x y

otherwise
     

 


 

Find   

(i) Marginal probability density functions of X and Y 

(ii) Conditional density functions 

(iii) Var(X) and Var(Y)  

(iv) Covariance between X and Y. 
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Solution:  

(i) 
1 3

( ) ( , ) (2 )
0 2

x f x y dy x y dy xf X


      


 

3
; 0 1( ) 2

0;

x xxf X
otherwise

  
 





 

Similarly  

3
; 0 1( ) 2

0;

y yxf Y
otherwise

  





 

(i) 
( , ) (2 )( , ) ,0 ( , ) 13( ) ( )

2

x yf x yXYf x y x yX Y yf yY

 
   


 

( , ) (2 )( , ) ,0 ( , ) 13( ) ( )
2

x yf x yXYf x y x yY X xf yX

 
   


 

(ii) 
1 1 3 5

( ) ( )
20 0 12

E X xf x dx x x dxX    
 
 
 

 

1 1 3 5
( ) ( )

20 0 12
E Y yf y dy y y dyY    

 
 
 

 

141 3 132 32( )
20 6 4 40

xE X x x dx x   
 
 
 

 

  1 25 1122( ) ( ) ( )
4 144 144

V X E X E X      

Similarly 
11

( )
144

V Y  . 
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(iii) 
11

( ) (2 )
00

E XY xy x y dxdy    

11 2 3 2 2
2 2 3 20 0

11 2 3 12 1 2
3 6 63 20 0

 
 
 


  



   

x
x y x y x y dy

x

y yyy dy

 

( , ) ( ) ( ) ( )  Cov X Y E XY E X E Y  

1 5 5 1.
6 12 12 144

    . 

Problems: 

1. An urn contains 7 white and 3 red balls. Two balls are drawn together, at random from this urn. 
Compute the probability that neither of them is white. Find also the probability of getting one 
white and one red ball. Hence compute the expected number of white balls drawn. 

2. A box contains 2n tickets among which nCi  tickets bear the number i; i = 0, 1, 2, 3, …, n. A 
group of m tickets is drawn. What is the expectation of the sum of their number?  

3. Let  

8 ,  0 1
( , )

0,
xy x y

f x y
elsewhere




 



 

Find  

( ) ( )
( ) ( )

( ) ( )

a E Y X x

b E XY X x

c Var Y X x







 

Mathematical Expectation of Two-Dimensional Random Variable 

The mathematical expectation of a function g(x,y) of two dimensional r.v. (X, Y) with p.d.f. f(x, y) is 
given by: 

[ ( , )] ( , ) ( , )


 


E g X Y g x y f x y dxdy  

(If X and Y are continuous variables) 

[ ( , )] ( ) ( )i jE g X Y g x y P X x Y yi jji
     

(If X and Y discrete variables) provided the expectation exists.  
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Conditional Expectation 

Discrete Case:  

 ( , ) ( , ) ( )
1


   


E g X Y Y y g x y P X x Y yi j i jj

i
 

1

( , ) ( )
( )

i j i j

i j

g x y P X x Y y
P Y y





  


  

Continuous Case:  

 ( , ) ( , ) ( )


  


E g X Y Y y g x y f x y dxX Y  

( , ) ( , )
( )

g x y f x y dx
f yY




   

2.8 Moment Generating Function and Their Properties 

The moment generating function (m.g.f.) of a random variable X (about origin) having the probability 
function f(x) is given by  

     
 

,

,

  


txe f x dx for continuous distributiontXM t E eX txe f x for discrete distribution
      (1)                  

Let us assume that r.h.s. of eq(1) is absolutely convergent for some positive number h such that –h<t<h. 
Thus 

    tXM t E eX
 

2 2
(1 ... ...)

2! !
2 2( ) ( )1 ( ) ... ...)

2! !
2

' ' '1 ... ... 1( )1 2
2! !

r rt X t XE tX
r

r rt E X t E XtE X
r

r
t t

t ar
r

  

     

     

     

 

  = 
'

!0





rt
rrr

                                                                                  (1b) 
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where 

( ) ,' ( )
,( )


  

 


rx f x dx for continuous distributionrE Xr r for discrete distributionx f x
x

  

is the rth moment of X about origin. Since the coefficients in this expansion enable us to find the 
moments, the reason for the name moment generating function is apparent 

Differentiating eq(1a) w.r.t. ‘t’ r times and then putting t=0, we get  

' 2' '{ ( )} . ! . . ...1 2! 2!0 0
' { ( )}

0

    
 

 


rd trM t r tr X r rdt rt t
rd M tr r Xdt t

  



 

In general, the moment generating function X about the point X = a is defined as: 

( )( )(about ) t X aM t X a E eX
    

 
 

' ' '

2 2( ) ( )1 ( ) ... ...
2! !

2
1 ... ...1 2

2! !

r rt X a t X aE t X a
r

r
t t

t r
r

  

          
  

     

 

where '
r = {E(X-a)r} is the rth moment about the point X=a. 

Some Limitations of Moment Generating Function 

1. A random variable X may have no moments although its m.g.f. exists. 

2. A r.v. X can have m.g.f. and some moments, yet the m.g.f. does not generate the moments. 

3. A r.v. X can have all or some moments, but m.g.f. does not exists except perhaps at one point. 

Properties of Moment Generating Function 

Property1: ( ) ( )cX XM t M ct , c being a constant  

Proof: By definition 

L.H.S. =McX(t) = E(etcX) 

R.H.S. = MX(ct) = E(ectX) = L.H.S. 



80 Random Variables, Mathematical Expectation & Moment Generating Function 

 Property2:The moment generating function of the sum of a number of independent r.v.’s is equal to the 
product of their respective moment generating functions. 

Symbolically, if X1, X2,…,Xn are independent random variables, then moment generating function of 
their sum X1+X2+…+Xn is given by: ( ) ( ) ( )... ( )

1 21 2  M t M t M t M tX X Xn nX X X  

Proof: By definition 

( )
( ) [ 1 2

1 2
]

 
 




t X X Xn
X X t

n
M E eX

 

1 2( ) [ ... ]

1 2( ) [ ] [ ]..

1 2

1 2
. [ ]

( ) ( ) ( )...
1

)
12

(
2

 

 









 

tXtX tX nM t E e e e

tXtX tX nM t E e E e E e

M t M t M

X X Xn

X X Xn

X X Xn
t M tX X Xn

 

Hence proved. 

Property 3: Effect of change of origin and scale of m.g.f. 

Let us transform X to the new variable U  by changing both the origin and scale in X as follow: 




X aU
h

 , where a and h are constants. 

Moment generating function of U (about origin) is given by  

( )( ) ( ) expU
t X atUM t E e E

h
         

 

( )
   
   
 
 

 
 
 

attX at at tX th h h h hE e e e E e e MX h
 

where MX(t) is the m.g.f. of X about origin. 

Remark: In particular, if we take  

( ) a E X  and  h X  then  

( ) 
  

X E X XU Z
X


 

is known as a standard variate. 

 Thus the m.g.f. of a standard variate Z is given by 
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( ) ( )



t tM t e MZ X





 

Uniqueness Theorem of Moment Generating Function 

The moment generating function of a distribution if it exists, uniquely determines the distribution. This 
implies that corresponding to a given probability distribution, there is only one m.g.f. (provides it exists) 
and corresponding to a given m.g.f., there is only one probability distribution.  

Hence MX(t) = MY(t) implies X and Y are identically distribution. 

Example 23: If the moments of variate X are defined by 

      E(Xr) = 0.6 ; r = 1,2,3,… 

Show that P(X = 0) = 0.4 

                    P(X = 1) = 0.6, P(X ≥2)= 0 

  Solution:  The m.g.f. of variate X is: 

( ) ' 1 (0.6)
! !0 1r

r rt tM tX r rr r


 
   

 
 

0.4 0.6 0.4 0.6
!0


   



rt te
rr

                               (1) 

       But ( ) ( ) ( )
0


  


tX txM t E e e P X xX x

 

( 0) . ( 1) ( )
2


     


t txP X e P X e P X x

x
                         (2) 

From (1) and (2), we get 

P(X = 0) = 0.4, P(X = 1) = 0.6; P(X ≥2) = 0 

Example 24:  Find the moment generating function of the r.v. whose moments are: 

' ( 1)!2  rrr  

Solution: The m.g.f. is given by: 

( ) ' ( 1)!2 ( 1)(2 )
! !0 0 0r

r rt t r rM t r r tX r rr r r


  
      

  
 

2 3( ) 1 2(2 ) 3(2 ) 4(2 ) ...
2( ) (1 2 )

    

 

M t t t tX
M t tX

 



 
 

CCHHAAPPTTEERR--33  
DISCRETE AND CONTINUOUS DISTRIBUTIONS 

Structure 

3.1 Discrete Distributions 

3.1.1 Uniform Distribution  

3.1.2 Bernoulli Distribution 

3.1.3 Binomial Distribution 

3.1.4 Poisson Distribution 

3.1.5 Geometric Distribution 

3.2 Continuous Distributions 

3.2.1 Uniform Distribution 

3.2.2 Exponential Distribution 

3.2.3 Normal Distribution  

3.1 Discrete Distributions 

The probability distribution gives us a law according to which different values of random variable are 
distributed with specified probability with some definite law. Probability distributions are generally 
divided into two classes. A discrete probability distribution (applicable to the scenarios where the set of 
possible outcomes is discrete, such as a coin toss or a roll of dice) can be encoded by a discrete list of 
the probabilities of the outcomes, known as a probability mass function. On the other hand, a continuous 
probability distribution (applicable to the scenarios where the set of possible outcomes can take on 
values in a continuous range (e.g. real numbers), such as the temperature on a given day) is typically 
described by probability density functions (with the probability of any individual outcome actually being 0). 

In this section we discuss some special discrete probability distributions such as Bernoulli, Binomial, 
Poisson, Geometric etc., of a random variable that is successfully applied in a wide variety of decision 
situations.  

3.1.1 Discrete Uniform Distribution 

Definition: A r.v. X is said to have a discrete uniform distribution over the range [1, n] if its p.m.f. is 
expressed as follows: 

1 ; for x 1, 2,..., n
P(X x) n

0; otherwise

   


  … (1) 



Mathematical Statistics 83 

 

Here n is known as the parameter of the distribution and lies in the set of all positive integers. Equation 
(1) is also called a discrete rectangular distribution. 

Moments: 
n

'
1

i 1

1 n 1E(X) i Mean
n 2


      

n
' 2 2
2

i 1
2n

' 3 3
3

i 1

1 (n 1)(2n 1)E(X ) i
n 6
1 n(n 1)E(X ) i
n 4





 
   


   




 

Variance = 
2

2 2 (n 1)(n 1) n 1V(X) E(X ) (E(X))
12 12

  
     

The moment generating function (m.g.f.) of X is: 
t ntn

tX tx
X t

x 1

1 e (1 e )M (t) E(e ) e
n n(1 e )


  

   (Using sum of G.P. formula) 

3.1.2 Bernoulli Distribution 

The Bernoulli distribution, named after the Swiss Mathematician Jacques Bernoulli (1654–1705), 
describes a probabilistic experiment where a trial has two possible outcomes, a success or a failure with 
reference of presence or absence of a particular attribute and characteristic. The probability of presence 
of attributes is called success which is denoted by p while the absence is known as failure which is 
denoted by q. For example, getting head in tossing of coin may be treated as success while tail is failure.  

Definition: A r.v. X is said to have a Bernoulli distribution with parameter p if its p.m.f. is given by: 

q;      if  x=0   (failure)
P(x,p)

p;      if  x=1   (success)


 


 

and zero elsewhere. The parameter p satisfies 0≤p≤1 and (1-p) is denoted as q. 

Remark: The Bernoulli distribution is useful whenever a random experiment has only two possible 
outcomes, which may be labelled as success and failure. 

Moments of Bernoulli Distribution 

The rth moment about origin is: 

r r r' E(X ) 0 .q 1 p p; r 1,2,...r
' E(X) p1

    

  
 

and 2' E(X ) p2    so that  
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2
2

2' 'Var(X) p p p(1 p) pq2 1           

' ' ' ' 33 2( )3 3 2 1 1
(1 )(1 2 )p p p

      

  
 

' ' ' 1 ' 2 ' 4
4 4 3 1 2 1 1

2

4 6 ( ) 3( )

(1 )(1 3 3 )p p p p

         

   
 

The m.g.f. of Bernoulli variate is  
0t 1t t

XM (t) e P(X 0) e P(X 1) q pe       

Example 1: Let X be random variable having Bernoulli distribution with parameter p=0.3. Find the 
mean and variance. 

Solution: Here p=0.3 and q=0.7 

Mean=0.3 

Variance=pq= (0.3)(0.7)=0.21 

3.1.3 Binomial Distribution 

Suppose, we have an experiment such as tossing a coin or throwing a die repeatedly or choosing a 
marble from an urn repeatedly. Each toss or selection is called a trial. In any single trial there will be a 
probability associated with a particular event such as head on the coin, 4 on the die, or selection of a red 
marble. In some cases this probability will not change from one trial to the next (as in tossing a coin or 
die). Such trials are then said to be independentand are often called Bernoulli trials. If Bernoulli trial is 
repeated a finite number of times then their probability distribution is called Binomial distribution. 
Binomial distribution was discovered by J. Bernoulli (1654-1705) and was first published eight years 
after his death, i.e. in 1713 and is also known as “Bernoulli distribution for n trials”. Binomial 
distribution is applicable for a random experiment comprising a finite number of Bernoulli trial with 
constant probability of success for each trial. 

Definition: The Binomial model has three defining properties: 

• Bernoulli trials are conducted n times, 

• The trials are independent, 

• The probability of success p does not change between trials. 

 A r.v. X is said to follow Binomial distribution if it assumes only non-negative values and its 
probability mass function is given by: 

x n xn
p q ; x 0,1,2,...,n;q 1 p

P(X x) p(x) x
0;otherwise

  
         




 



Mathematical Statistics 85 

 

Here two independent constants ‘n’ and ‘p’ are known as the parameters of the distribution. ‘n’ is also 
known as the degree of the binomial distribution.‘p’ is the probability of success in each Bernoulli trial 
and q=1-p is the probability of failure in each trial. 

Any random variable which follows Binomial distribution is known as binomial variate. 

Notation: X ~ B(n, p) to denote the random variable X follows Binomial distribution with parameters n 
and p. The probability p(x) is also sometimes denoted as B(x, n, p). 

Remark:  

1. Physical condition for Binomial distribution 

(i) Each trail results in two exhaustive and mutually disjoint outcomes, termed as success 
and failure. 

(ii) The number of trials ‘n’ is finite. 

(iii) The probability of success ‘p’ is constant for each trial. 

(iv) The trials are independent of each other 

2. Additive property of Binomial distribution: 

If X and Y are two binomial distributed independent random variables with parameters (n1, p) 
and (n2, p) respectively, then their sum also follows a binomial distribution with parameters 
n1+n2 and p. But if the probability of success is not same for the two random variables then this 
property does not hold. 

Example 2: In a Binomial distribution consisting of 5 independent trials, probability of 1 and 2 
successes are 0.4096 and 0.2048 respectively. Find the parameter ‘p’ of the distribution.   

Solution: Let X ~ B(n, p).  

By definition of Binomial distribution, we have  

n = 5, p(1) = 0.4096, p(2) = 0.2048 

According to Binomial probability law: 

x 5 x5
P(X x) p(x) p (1 p) , x 0,1,2,...5

x
 

     
 

 

Now  

4

2 3

5
p(1) p(1 p) 0.4096                       (1)

1
5

p(2) p (1 p) 0.2048                    (2)
2

 
   
 
 

   
 

 

 Dividing (1) by (2) we get 
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4

2 3

5
p(1 p)

1 0.4096 5(1 p) 2
5 0.2048 10pp (1 p)
2

1p 0.2
5

 
      

 
 

 

  

 

Example 3: Ten coins are thrown simultaneously. Find the probability of getting atleast seven heads. 

Solution: Letp = probability of getting a head = 1
2

 

q = probability of not getting a head = 1
2

 

 The probability of getting x heads in a random throw of 10 coins is: 
x 10 x 1010 101 1 1p(x) ;x 0,1,2,...,10

x x2 2 2

                  
        

 

∴ Probability of getting at least seven heads is given by 

P(X 7) p(7) p(8) p(9) p(10)      

10 10 10 10 101 120 45 10 1 176
7 8 9 102 1024 1024

                          
          

 

Example 4: An irregular six-faced die is thrown and the expectation that in 10 throws it will give five 
even numbers is twice the expectation that it will give four even numbers. How many items in 10,000 
sets of 10 throws each, would you expect it to give no even number? 

Solution: let p be the probability of getting an even number in a thrown of a die. Then the probability of 
getting x even numbers in ten throws of a die is given by: 

x 10 x10
P(X x) p q ;x 0,1,2,...,10

x
 

   
 

 

We are given that: 

5 5 4 6

P(X 5) 2P(X 4)
10 10

p q 2 p q
5 4

10!p 2(10!)q p 2q 3p 5(1 p)
5!5! 4!6! 5 6

5 3p or q
8 8

  

   
    

   

      

  
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Thus 
x 10 x10 5 3P(X x)

x 8 8

            
    

 

Hence the required number of times that in 10,000 sets of 10 throws each, we get no even number 

10

10,000 P(X 0)

310,000 .5499.
8

  

    
 

 

Problems: 

1. A and B play a game in which their chances of winning are in the ratio 3:2. Find A’s chance of 
winning atleast three games out of the five games played. 

2. With the usual notations, find p for a Binomial variate X, if n = 6 and 9P(X=4) = P(X=2). 

3. Let X and Y be two independent random variables such that (4, 0 .7 )X B and Y (3, 0.8)B

Find [ 1].P X Y   

Moments of Binomial Distribution 

n nn n 1x n x x 1 n x n 1' E(X) x p q np p q np(q p) np1 x x 1x 0 x 0
          
 

      
   

 

 n n n 1 n n 1 n 2n n 1 n 2 n 3
. . .

x x 1 x 2 x 3x x x 1 x x 1 x 2
and so on.    

  
    

              
       

  

Thus the mean of the Binomial distribution is np. 

n n2 2 x n x' E(X ) x p q2 xx 0
  


  
 

 

 

 
n n(n 1) n 2 x n xx(x 1) x . p q

x 2x 0 x(x 1)

n n 22 x 2 n xn(n 1)p p q np
x 2x 2

2 n 2n(n 1)p (q p) np
2n(n 1)p np

    
 

    


   

  

  
 

  
 

 

n n3 3 x n x' E(X ) x p q3 xx 0
  


  
 
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 n n x n xx(x 1)(x 2) 3x(x 1) x p q
xx 0

n nn 3 n 23 x 3 n x 2 x 2 n xn(n 1)(n 2)p p q 3n(n 1)p p q np
x 3 x 2x 3 x 2

3 n 3 2 n 2n(n 1)(n 2)p (q p) 3n(n 1)p (q p) np
3 2n(n 1)(n 2)p 3n(n 1)p np

     


          
  

        

     

  
 

      
   

Similarly  

n n4 4 x n x' E(X ) x p q4 xx 0
  


  
 

 n n x n xx(x 1)(x 2)(x 3) 6x(x 1)(x 2) 7x(x 1) x p q
xx 0

         


  
 

 4 3 2n(n 1)(n 2)(n 3)p 6n(n 1)(n 2)p 7n(n 1)p np           

Central Moments of Binomial Distribution
2 2 2 2 2 2' ' n p np np n p np(1 p) npq2 2 1

3' 3 ' ' 2 '3 3 2 1 1

          

      
 

   3 2 2 3n(n 1)(n 2)p 3n(n 1)p np 3np n(n 1)p np 2(np)

2 2np( 3np 3np 2p 3p 1 3npq)
2 2np(2p 3p 1) np(2p 2p q) npq(1 2p)

npq(q p 2p) npq(q p)

         

      

       

    

 

2 4' 4 ' ' 6 ' ' 3 ' npq[1 3(n 2)pq]4 4 3 1 2 1 1             (on simplification) 

Hence  

2 2 2 2 2 2 2n p q (q p) (q p) (1 2p)3
3 3 3 31 npq npqn p q2

  
    



 

npq(1 3(n 2)pq) (1 3(n 2)pq) 1 6pq4 32 2 2 22 npq npqn p q2

    
     


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q p 1 2p
1 1 npq npq

1 6pq
32 2 npq

 
    


    

 

Remarks: 

(i) Variance = npq<np = mean 

Hence, for Binomial distribution variance is less than mean. 

(ii) Standard deviation is npq  

Example 5: The mean and variance of Binomial distribution are 4 and 4/3 respectively. Find P(X≥1) 

Solution: Let X ~ B(n, p). 

Then we are given:  

Mean = np = 4                          (1) 

Var(X) = npq = 4/3                    (2) 

Dividing, we get 
np 4 1 2

q p
4npq 3 3

3

      

Substituting in (1), we obtained 

4 4 3
n 6

p 2
6

1 1nP(X 1) 1 P(X 0) 1 q 1 1 0.99863
3 729


  

           
 
 
 

 

Problems: 

1. For a Binomial distribution with p = ¼ and n = 10. Find mean and variance. 

2. If X ~ B(n, p). find p if n = 6 and 9P[X=4] = P[X=2] 

Recurrence Relation for the Moment of Binomial Distribution 

By definition, we have  

 
0

( ) ( )
n

r x n x
r

x

n
E X E X x np p q

x
 



 
     

 
  

Differentiating w.r.t. to p, we get  



90 Discrete and Continuous Distributions 

 1 1 1

0
( ) ( ) ( )

n
r x n x r x n x x n xr

x

nd nr x np p q x np xp q n x p q
xdp

      



             
  

1

0 0
( ) ( )

n n
r x n x r x n x

x x

n n x n xnr x np p q x np p q
x x p q

  

 

     
          

     
   

 1

0 0

1 1

0 0

1 1

1 1

( ) ( ) ( ) ( )

1( ) ( ) ( ) ( )

1

n n
r r

x x

n n
r r

x x

r r

r
r r

n n x np
nr x np p x x np p x

x x pq
n n

nr x np p x x np p x
x xpq

nr
pq

dpq nr
dp

 

 



 

 

 

 

 

   
       

   
   

       
   

  

 
   

 

 

 
 

For r=1, 2 

1
2 0

3 ( )

dpq npq
dp

npq q p

 



 
   

 
 

 

Moment Generating Function of Binomial Distribution 

Let ( , )X B n p  

   
0 0

( ) ( )
n n ntX tx x n x t x n x t

X
x x

n n
M t E e e p q pe q q pe

x x
 

 

   
       

   
   

m.g.f. about Mean of Binomial Distribution 

     

 

( )

2 2 3 3 2 2 3 3

2 3 4
2 2 3 3

. . ( )

1 ... 1 ...
2! 3! 2! 3!

( ) ( ) ( ) ...
2! 3! 4!

n nt X np tnp tX tnp tnp t pt tq
X

n

n

E e e E e M t e q pe qe pe

p t p t q t q tq pt p tq

t t tq p pq q p pq q p pq q p

            

    
             

    

 
         
 

 

2 3 4

1 ( ) (1 3 ) ...
2! 3! 4!

n
t t tpq pq q p pq pq

  
        

  
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2 3 4

22 3 4

1 ( ) (1 3 ) ...
1 2! 3! 4!

( ) (1 3 ) ... ...
2 2! 3! 4!

n t t tpq pq q p pq pq

n t t tpq pq q p pq pq

   
        
                      

 

2 3

2 3coefficinet of , coefficinet of ( )
2! 3!
t tnpq npq q p       

Additive property of Binomial Distribution 

Let 1 1 2 2( , )   a n d  ( , )   X B n p Y B n p  be the independent reabndom variables.Then 

   1 2

1 1 2 2M ( ) , M ( )
n nt t

X Xt q p e t q p e    …(1) 

Then we have,  

   1 2

1 1 2 2M ( ) .
n nt t

X Y t q p e q p e                      …(2) 

The equation (2) cannot be expressed in the for  ntq pe , from uniqueness theorem of m.g.f.’s it 

follows that X+Y is not a binomial distribution. Hence, in general the sum of two independent random 
variates is not a binomial variate. In the above case, if we take 1 2p p p  , then we can say that X+Y is 
a binomial variate. 

Fitting of Binomial Distribution 

To fit a Binomial distribution, we need the observed data which is obtained from repeated trials of given 
experiment. Process of finding the probabilities corresponding to each value of the Binomial variable 
becomes easy if we use the recurrence relation for the probabilities of Binomial distribution. 

Recurrence Relation 

We have studied that Binomial probability function is 
n x n xp(x) P[X x] C p qx

                                                                                     (1)  

If we replace x by x+1, we set 

n (x 1)n x 1p(x 1) P[X x 1] C p qx 1
                                                               (2) 

Dividing (2) by (1), we have 

n x 1 n x 1C p qp(x 1) n!x!(n x)! px 1
n x n xp(x) C p q n!(x 1)x!(n x 1)! qx

  
      
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n!(n x)(n x 1)! p n x p

n!(x 1)!(n x 1)! q x 1 q

   
   

   
 

n x p
p(x 1) p(x)

x 1 q


   


                                                                                      (3) 

Putting x = 0, 1, 2, 3,… in this equation we get p(1) in terms of p(0), p(2) in terms of p(1), … and so on. 

Process of Fitting Binomial Distribution 

We first find the mean from the given frequency distribution and equate it to np. From this, we can find 
the value of p, after that we obtain p(0) = qn, where q = 1-p 

Then the recurrence relation i.e. p(x+1) 
n x

p(x)
x 1






 
 
 

 is applied to find the value of p(1), p(2),…. In 

this way, the binomial distribution is fitted to the given data. Thus fitting of a binomial distribution 
involves comparing the observed frequencies with the expected frequencies to see how best the observed 
results fit with the theoretical (expected) results. 

Example 6: Four coins were tossed and number of heads noted. The experiment is repeated 200 times. 
The number of tosses showing 0,1 2, 3 and 4 heads were found. Fit a binomial distribution as under. Fit 
a binomial distribution to these observed results assuming that the nature of the coins is not known. 

Number of 
heads 

0 1 2 3 4 

Number of 
tosses 

15 35 90 40 20 

Solution: Here n = 4, N = 200 

First, we obtained the mean of the given frequency distribution as follows: 

Number of heads (X) Number of tosses (f) fX 

0 15 0 

1 35 35 

2 90 180 

3 40 120 

4 20 80 

Total  200 415 
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∴ Mean = 
f (x) 415

2.075
f 200


 


 

As mean for Binomial distribution is np. 

∴ np = 2.075 

2.075
p 0.5188

4
4 4P(X 0) q (0.4812) 0.0536

  

    

 

Now, using the recurrence relation 

  n x p
p x 1 . p(x); x 0,1, 2,3, 4

x 1 q


  


 

Numberof heads 
X 

n x p 4 x 0.5188

x 1 q x 1 0.4812

4 x
(1.07814)

x 1

 


 






   
   
   

 

p(x) Expected 
theoretical 
frequency of f(x) 

0 4.31256 P(0)=0.0536 10.72≈11 

1 1.61721 P(1)=0.23115 46.23≈46 

2 0.71876 P(2)=0.37382 74.76≈75 

3 0.26954 P(3)=0.26869 53.73≈ 54 

4 0 P(4)=0.0724 14.48 ≈14 

Problem: Seven coins are tossed and number of heads noted. The experiment is repeated 128 times and 
the following distribution is obtained: 

Number of 
heads 

0 1 2 3 4 5 6 7 

Frequencies 7 6 19 35 30 23 7 1 

Fit a binomial distribution to these observed results assuming that the nature of the coins is not known. 

3.1.4 Poisson Distribution 

Sometimes, we are interested in checking whether event is occurring at random points in time or space. 
Poisson distribution was discovered by Simeon Denis Poisson (1781-1840). Poisson distribution is used 
to calculate the probability of having a specified number of occurrences of an event over a fixed interval 
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of time or space. It provides a good model when the data count from an experiment is small i.e. the 
number of observations is rare during a given time period. 

Examples:  

Some examples of random variables which usually follow the Poisson distribution are: 

1. The number of misprints on a page of a book. 
2. The number of people in a community living to 100 years of age 
3. The number of wrong telephone numbers dialled in a day. 
4. The number of customers entering a shop on a given day. 
5.  The number of α-particles discharged in a fixed period of time from some radioactive 

source. 
Poisson distribution is a limiting case of the Binomial distribution under the following conditions 

(i) the number of trials is indefinitely large i.e. n→∞ 
(ii) the constant probability of success for each trial is indefinitely small i.e. p→0 
(iii) np = is finite. 

Thus, p , q 1
n n

 
  

 
 
 

, where   is a positive real number. 

The probability of x successes in a series of n independent trials is 

n x n xB(x;n, p) p q ; x 0,1, 2,..., n
x

xn p n(1 p)
x 1 p

n

n(n 1)(n 2)...(n x 1) n n. (1 )xx! n
1

n

    
 

  
     

 
       

  
 

 

1 2 x 11 1 ... 1 nn n n x 1x n
x! 1

n

                      
   

 

 

xe
B(x; n, p) , x 0,1, 2...limn x!


  


 

(without using sterling approximation.) 
Note: Poisson distribution can also be derived using sterling approximation.  
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Definition:A r.v. X is said to follow a Poisson distribution if it assumes only non-negative values and its 
probability mass function is given by: 

xe
; x 0,1, 2...; 0p(x, ) P(X x) x!

0; otherwise


     





 

Here  is known as the parameter of the distribution. 

Remarks:  

(i) If X follows Poisson distribution with parameter  then we shall use the notation [ X ~ P()] 

(ii) If X and Y are two independent Poisson variate with parameters 1 and 2 respectively, then 
X+Y is also a Poisson variate with parameter 1+2. This is known as additive property of 
Poisson distribution. 

Moments of Poisson Distribution 

rth order moment about origin of Poisson variates is  

1

xer r rE(X ) x p(x) xr x 0 x 0 x!
xe

E(X) xp(x) x
x 0 x 0 x!

2 3
e 1 ... e e

2! 3!

  
    
 

  
    
 

             
 
 
 

 

Hence Mean =  

x xe e' 2x (x(x 1) x)2 x 0 x 0x! x!

   
     
 

 

2

x x
e x(x 1) e x

x! x!x 0 x 0
x 22 2 2e e e

(x 2)!x 0
2'

      
 

             
  

   

 

2 2 1
2 2 2V(X) ' '               
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3

x3' E(X ) x(x 1)(x 2)e
x!x 0
x x x

e x(x 1)(x 2) 3e x(x 1) e x
x! x! x!x 0 x 0 x 0

x 3 x 23 2 3 2e 3 e e e 3 e e
(x 3)! (x 2)!x 3 x 2

3 23

     


             
  

                        
        

    

 

 

4 4' E(X ) x p(x, )4 x 0
x

x(x 1)(x 2)(x 3) 6x(x 1)(x 2) 7x(x 1) x e
x!x 0

x 4 x 3 x 24 3 2e 6e 7e
(x 4)! (x 3)! (x 2)!x 4 x 3 x 2

4 3 3 4 3 2(e e ) 6 e e 7 e e 6 7


   


          


                
    

                  

 

Third and fourth order central moment is 

2 2 2' ' ( )2 2 1

3
234

        

  

   

 

Co-efficient of skewness and kurtosis are given by 

2 2 13
3 31
2

 
   

 
 and 

14 322
2

1
1 1

1
32 2


   



   


    


   and 

Hence the Poison distribution is always a skewed distribution. Preceding to the limit as
, 0, 31 2       . 
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Note: In Poisson distribution mean =variance. 

Recurrence Relation for Moments of the Poisson Distribution 

We know 

 
0 0

( ) ( ) ( , ) ( )
!

x
r r r

r
x x

eE X E X x p x x
x

   
 

 

        

Differentiating w.r.to  , we get 

 

 

1 1

0 0

1 1

0 0

( )( )
! !

( )( ) ( )
! !

x r
r x xr

x x
x r

r x

x x

d e xr x x e e
d x x

e xr x e x
x x


 




    


   

 
   

 

 
  

 


   


    

 

 
 

1 1

0 0

1( ) ( )
! !

x x
r r

x x

e er x x
x x

   


  
 

 

       

 

1 1

1 1

231 2
2 0 3 1 4 2

1

Putting r=1,2, and 3 sucessively, we get

, 2 , 3 3

r r

r
r r

r

dr
d

dd d
d d d

 


  


             
  

 

 

  

  

         

 

m.g.f. of Poisson Distribution 

   

   

0

2
1

!

1 ....
2!

t

x
tX tx

X
x

t
et

eM t E e e
x

e
e e e
















 

       
  


 

Additive or Reproductive Property of Poisson Variates 

The sum of independent Poisson variates is also a Poisson variate. If ( 1,2,3..., )iX i n are 

independent Poisson variates with parameters ; 1,2,...,i i n  respectively, then 
1

n

i
i

X

 is also a 

Poisson variate with parameter
1

n

i
i



 . 
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Proof:  

( )
( ) ; 1, 2,3,...,

( ) ( ). ( )... ( )...1 2 1 2

( ... ( 1)( 1)( 1) ( 1) 1 2 )1 2 ...

teiM t e i nXi
M t M t M t M tX X X X X Xn n

ttt t eee e nne e e e



   


 

  

   
 

 

which is the m.g.f. of a Poisson variatewith parameter ...1 2 n    . 

Hence by Uniqueness theorem of m.g.f.’s
1

n

i
i

X

 is also a Poisson Variate with parameter

1

n

i
i



  

Example 7: If the probability that an individual suffers a bad reaction from an injection of a given 
serum is 0.001, determine the probability that out of 1500 individuals 

(i) Exactly 3 

(ii) More than 2, 

individuals suffer from bad reaction  

Solution:Let X be the Poisson variate, “number of individuals suffering from bad reaction”. Then  

             n = 1500, p = 0.001 

∴ = np = (1500)(0.001) = 1.5 

By Poisson distribution, 

xe
P[X x] ; x 0,1, 2...

x !
1.5 xe (1.5)

; x 0,1, 2...
x !


  


 

 

Thus  

(i) 

1.5 3e (1.5)
P[X 3] 0.1255

3!
0.5 1 1.5[e 0.6065, e 0.3679 e (0.3679)(0.6065) 0.2231]


  

      

 

(ii) P[X 2] 1 P[X 2] 1 [P (X 2) P (X 1) P (X 0)]            
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1.5 2 1.5 1 1.5 0e (1.5) e (1.5) e (1.5)
1

2! 1! 0!

2.251.5 1.51 e 1.5 1 1 3.625e 0.1913
2

  
   

       

 
 
 

 
  

 

Example 8: If the mean of a Poisson distribution is 1.44, find the values of variance and the central 
moments of order 3 and 4. 

Solution: Mean = 1.44 =  

                     Variance =  = 1.44 

1.443
2 23 3(1.44) 1.44 7.664

   

       
 

Example 9: If a Poisson variate X is s.t. P(X=1) = 2P(X=2). Find the mean and variance of the 
distribution. 

Solution: Let  be the mean of the distribution, hence by Poisson distribution. 

xe
P[X x] ; x 0,1, 2..

x!


    

Now  

P[X 1] 2P[X 2]
2e e

2
1! 2!

2

2 0

0,1

  

  
 

   

    

  

 

But  = 0 is rejected. 

{ if  = 0 then either n = 0 or p = 0 which implies that Poisson distribution does not exist in this case} 

 = 1. Hence Mean =  = 1 and variance = 1. 

Problems: 

1. A car hire firm has two cars, which it hires out day by day. The number of demands for a car on 
each day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days 
on which  
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(i) Neither car is used and 

(ii) The proportion of days on which some demand is refused. 

2. In a Poisson frequency distribution, frequency corresponding to 3 successes is 2/3 times 
frequency corresponding to 4 successes. Find the mean and standard deviation of the 
distribution. 

Note: Poisson frequency distribution  

  f(x) = NP[X=x] = 
xe

N ; x 0,1, 2, ...
x


 {If an experiment is repeated N times} 

Fitting of Poisson Distribution 

To fit a Poisson distribution to the observed data, we find the theoretical frequencies corresponding to 
each value of the Poisson variate. Process of finding the probabilities corresponding to each value of the 
Poisson variate becomes easy if we use recurrence relation for the probability of Poisson distribution. 

Recurrence Formula 

For a Poisson distribution with parameter, we have  

xe
p(x)

x !


                                                                 (1) 

Changing x to x+1, we have 

x 1e
p(x 1)

(x 1)!

 
 


                                                       (2) 

Dividing (2) by (1), we have 

x 1p(x 1) e x!
. xp(x) (x 1)! x 1e

p(x 1) p(x)
x 1

   
  


  



 

This is the recurrence relation for probability of Poisson distribution. After obtaining the value of p(0) 
using Poisson probability function i.e. 

0e
p(0) e

(0)!

   , we obtain p(1), p(2) and so on…. 

Example 10: After correcting 50 pages of the proof of a book, the proof reader finds that there are on 
the average, 2 error per 5 pages. How many pages would one expect to find with 0,1,2,3 and 4 errors, in 
1000 pages of the first print of the book? 
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Solution: Let the random variable X represents the number of error per page. Then the mean number of 

error per page is given by: 2 0.4
5

   . The probability of x error per page is given by:

0.4 (0.4)( ) ; 0,1,2,...
! !

x xe eP X x x
x x


  

     

Expected number of pages with x errors per page in a book of N=1000 pages are: 

0.4 (0.4)( ) ( ) 1000 ; 0,1,2,...
!

xef x N P X x x
x



       

No. of error  

per page (x) 

Probability 

p(x) 

Expected number of pages  

f(x)=Np(x,  ) 

0 0.4(0) 0.6703p e   670.3670 

1 0.4

(1) (0) 0.26812
0 1
ep p


 


 
268 .12 268 

2 0.4

(1) (1) 0.053624
1 1
ep p


 


 
53.6245454 

3 0.4

(1) (2) 0.0071298
2 1
ep p


 


 
7.12987 

4 0.4

(1) (3) 0.00071298
3 1
ep p


 


 
0.712981 

 

Problems: 

1. Fit a Poisson distribution to the following data which gives the number of datasets in a sample of 
clover seeds: 

Number of doddens(x) : 0 1 2 3 4 5 6 7 8
Observed Frequency(f) : 56 156 132 92 37 22 4 0 1

 

2. If X has a Poisson distribution such that ( 1) ( 2), evaluate P(X=4).P X P X    

3. The following data give frequency of aircraft accidents experienced by 2,546 pilots during a 
four-year period: 

No. of accidents(x) : 0 1 2 3 4 5
Frequencies(f) : 2036 422 71 13 3 1

 

Calculate mean number of accidents and fit a Poisson distribution. 
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4. In a certain factory turning out fountain pens, there is a small chance, 1
500

, for any pen to be 

defective. The pens are supplied in packets of 10. Calculate the approximate number of packets 
containing (i) one defective (ii) two defective pens in a consignment of 20000 packets. 

3.1.5 Geometric Distribution 

This distribution is used when we have to wait first success after failure so many times. A r.v. is said to 
have geometric distribution if it assumes only non-negative values and its p.m.f. is given by: 

; 0,1, 2,..., ; 0 1; 1( )
0;

xq p x p q p
P X x

otherwise
     

  


 

The random variable X represents the number of Bernoulli trials up to which the first success occurs. 
This is the number of trials having failure before first success. Here p is the probability of success in a 
single trial. 

Clearly assignment of probabilities is permissible, since 

2

0 0
( ) (1 ...) 1

1
x

x x

pp x q p p q q
q

 

 

      
   

Example 11: An unbiased die is cast until 6 appears. What is the probability that it must be cast more 
than five times? 

Solution: Let p be the probability of a success i.e. getting 6 in a throw of the die 

1 1 5    and 1
6 6 6

p q      

Let X be the number of failure preceding the first success. 

[ ] ; for 0,1,2,...xP X x q p x    

P[The number of failure preceding the first success is at least 5]= [ 5]P X   

                                    = [ 5] [ 6] [ 7] ...P X P X P X       

   
5 6 75 1 5 1 5 1 ...

6 6 6 6 6 6
                 
       

 

   
5 2 3 55 1 5 5 5 51 ...

6 6 6 6 6 6
                                    

 

Moments of Geometric Distribution 
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Mean= ' 1 2
1

0 1 1
( ) (1 )x x

x x x

qxP X x xq p pq xq pq q
p


  

 

  

          

Variance= 2 2 2( ) [ ( )] [ ( 1)] ( ) [ ( )]E X E X E X X E X E X      

     =   

2
2 2 2 3

2
1 2 1

2 2

2 2 2 2

( 1) 2[ ( 1)] ( 1) ( 1) 2 2 (1 )
2

2( )

x x x

x x x

x x qE X X x x q p x x q p pq q pq q
p

q q q qV x
p p p p



  
 

  


        

     

  
 

Note: The variance of geometric distribution is always greater than mean. 

Moment Generating Function 

0 0

1

( ) ( ) ( )

                  (1 )
(1 )

tX tx x t x
X

x x

t
t

M t E e e q p p e q

pp qe
qe

 

 



  

 


 
 

Remark:  In Geometric distribution, Variance= 2
q
p

=
Mean

p
>Mean 

Hence for Geometric distribution variance is greater than mean. 
Problems:  

1. Probability of hitting a target in any attempt is 0.6, what is the probability that it would be hit on 
fifth attempt? 

2. Determine the geometric distribution for which the mean is 3 and variance is 4. 
Lack of Memory 
This is the only discrete distribution which has the property of ‘memoryless’ or’ forgetfulness’. For 
example, in a random experiment satisfying geometric distribution the wait upto 3 trials for first success 
does not affect the probability that one has to wait for a further 5 trials if it is given that the first three 
trials are failure.  
Suppose an event occurs at one of the trail 1, 2,3,4,…and the occurrence time X has a geometric 
distribution with probability p. Let X is the number of trials preceding to the successful attempt. Thus 

  

1 2

2

[ ] [ ] [ 1] [ 2] ...
                = ...
                = [1 ...]

1               =
1

               =q

j j j

j

j

j

P X j P X j P X j P X j
q p q p q p
q p q q

q p
q

 

         

  

  

 
  

 

Now  
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[ | ][ | ]
[ ]

[( ) ( )]                                 =
[ ]

[ ]                                 =
[ ]

                                 =q [ ]

j k

j

k

P X j k X jP X j k X j
P X j

P X j k X j
P X j

P X j k q
P X j q

P X k



  
   


   



 




 

 

So, [ | ] [ ]P X j k X j P X k      

The above result reveals that the conditional probability of at least first j+k trials are unsuccessful before 
the first success given that at least first j trial were unsuccessful, is the same as the probability that the 
first k trials were unsuccessful. So, the probability to get first success remains same if we start counting 
of k unsuccessful trials from anywhere provided all the trials preceding to it are unsuccessful, i.e. future 
does not depend on the past, it depends only on the present. This distribution is called memoryless or 
forgetfulness because it forgets the preceding trials. 

3.2 Continuous Distributions 

In this section, we will discuss some univariate continuous distributions such as uniform distribution, 
normal distribution, and exponential distribution in details. 

3.2.1 Uniform Distribution 

A random variable X is said to be uniformly distributed in a x b   if its density function is 

1 ;
( ; , )

0;

a x b
f x a b b a

otherwise

   


 

Here a( a ) and b ( )b     are the parameters of the distribution. A random variable which 

follows uniform distribution is written as [ , ]X U a b  

Remarks: 

1. This distribution is called uniform distribution because the probability has a uniform value over 
the interval [a,b]. 

2. This distribution is also called rectangular distribution because if we draw the graph y=f(x) over 
x-axis and between the ordinates x=a and x=b, it describe a rectangle as shown in below figure. 



Mathematical Statistics 105 

 

 
3. A cumulative distribution function F(x) is given by: 

0;

( ) ;

1;




  










x a
x a

F x a x b
b a

x b

 

4. The graphs of uniform p.d.f. f(x) and the corresponding cumulative distribution function F(x) are 
given below 

 
5. For a rectangular or uniform variate X in (-a, a), the p.d.f. is given by: 

1
;

( ) 2
0;

a x a
f x a

otherwise

  





 

Moments of Rectangular Distribution 

Let X ~ U[a, b] 

1 11 1
( )

1
'r

r rb b b ar rx f x dx x dx
a ab a b a r


 

   
  

 
 
 

 

In particular for r=1 
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1

2

2 21mean '
2 2

3 3 2 21'
3 3

b a b a
b a

b a b ab a
b a





  
      

   
     

 

Variance =  2 1

22 2 2( ) ( ) ( )2' '
3 2 12

b ab a b a b a     
     

Moments Generating Function of Rectangular Distribution 

( ) ( ) , 0
( )


    

 

tx bt atb b e e etxM t e f x dx dx tX a a b a t b a
 

Mean Deviation about Mean ( ) 

 of Rectangular distribution is given by: 

1
( )

2

21

( )
2

b b a b
E X Mean x Mean f x dx x dx

a ab a
b a

t dt
b ab a






      





  
 

 

where 
2

a b
t x


   

21
.2

0 4

b a
b a

tdt
b a






  


 

Example 12: If X is uniformly distributed with mean 1 and Variance 4/3, find P(X<0). 

Solution: Let X ~ U[a, b], so that 

1
( ) ,  


p x a x b

b a
 

We are given: 

Mean= 

1
( ) 1 2

2
    b a b a
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and Variance = 
1 42( ) 4

12 3
     b a b a  

solving, we get a = -1 and b = 3; (a<b) 

1
( ) ; 1 3

4
0 1 10

( 0) ( ) 11 4 4

    

    

p x x

P X p x dx x

 

Example 13: Subway trains on a certain line run every half hour between mid-night and six in the 
morning. What is the probability that a man entering the station at a random time during this period will 
have to wait atleast twenty minutes? 

Solution: Let the r.v. X denotes the waiting time for the next train. Under the assumption that a man 
arrives at the random, X is distributed uniformly on (0, 30) with p.d.f. 

1
; 0 30

( ) 30
0;

 





x
f x

otherwise
 

The probability that he has to wait atleast 20 minutes is given by: 

30 301 1 1
( 20) ( ) 1. (30 20)

20 2030 30 3
      P X f x dx dx  

Problems:   

1. If X is uniformly distributed with mean 2 and variance 12. Find P[X<3]. 

2. A random variable X has a uniform distribution over (-2,2). Find k for which 1[ ]
2

P X k   

3. Metro trains are scheduled every 5 minutes at a certain station. A person comes to the station at a 
random time. Let the random variable X count the number of minutes he/she has to wait for the 
next train. Assume X has a uniform distribution over the interval (0,5). Find the probability that 
he/she has to wait at least 3 minutes for the train. 

 

3.2.2 Exponential Distribution 

The exponential distribution occurs in many different connections such as the radioactive or particle 
decays or the time between events in a Poisson process where events happen at a constant rate. So 
exponential distribution serves as a good model whenever there is a waiting time involved for a specific 
event to occur e.g. waiting time for a failure to occur in a machine. 
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Definition: A r.v. X is said to have an exponential distribution with parameter θ>0, if its p.d.f. is given 
by: 

; 0( , )
0;

 




xe xf x
otherwise

  

The cumulative distribution function F(x) is given by: 


( ) ( ) exp( )

0 0

1 exp( ); 0
( )

0;

   

  


x x
F x f u du u du

x x
F x

otherwise

 


 

Moment Generating Function of Exponential Distribution 

( ) ( ) exp{ ( ) }
0 0

1
1 ;

0

      



    


   
   
   

tx tx xM t E e e e dx t x dxX

r
t t

t
rt

  




  

 

' ( )rE Xr    coeff. of 
!

rt

r
 in 

!
( ) 

r
M t rX 

, r=1,2,3,… 

Mean = 1 2 2,
21' ' 

 
   and variance = 2 2

2 1 12' '2 2 2 2  
  

      

Hence if X ~ exp(θ), then Mean = 1


 and variance = 
1
2

 

Remark: Variance =
1 1 1

.2  
Mean

  
 

∴ Variance > Mean, if 0< θ<1 

Variance = Mean, if θ = 1 

Variance < Mean, if θ>1 

Theorem: If X1, X2, …, Xn are independent r.v.’s, Xi having an exponential distribution with parameter 

θi; i= 1, 2, 3,…, n, then Z = min(X1, X2,…, Xn) has exponential distribution with parameter
1



n
ii
 . 
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Proof: Cumulative distribution of Z is 

( ) ( ) 1 ( )    G Z P Z z P Z zZ  

1 [min( ) ]2

1 ( ; 1, 2,. )

 , , ,

.

1

.

P zn

P z

X X

i ni

X

X





 

  
 

1 ( )
1

n
P X zii

  


    (  ,  1 2 , ,X X X n are independent) 

( ) 1 [1 ( )] 1 [1 ( )]
1 1

n n
G z P X z F ziZ Xii i

       
 

 

(where F is the distribution function of Xi) 

1 exp{( ) }; 0
( ) 1 [1 (1 )] 1

1 0;

n
n z z zi iG z e iZ i otherwise

    
     






 

    exp ; 0
( ) ( ) 1 1

0 ;

n n
d z zi ig z G z i iZ dz otherwise

   
    





 

min( , , ..., )1 2 Z X X X n  is an exponential variate with parameter 
1



n
ii
  

Memoryless Property of Exponential Distribution 

Exponential distribution is the only continuous distribution which has the memoryless property given 
by: 

[ ] [ ]  for all , where -P X x a X a P X x x Y X a       

i.e. the conditional probability of waiting upto the time ‘x+a’ given that it exceeds ‘a’ is same as the 
probability of waiting upto the time ‘x’. 

Proof: The p.d.f of the exponential distribution with parameter θ is  

( ) exp( ); 0, 0f x x x         

We have  

( ) ( )       P Y x X a P X a x X a  where Y = X-a 

( ) ( )P X a x X a P a X a x          
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(1 )
a x x a xe dx e e
a

  
       

and 

( )

( )
( ) 1

( )

    

        


x aP X a e dx e
a

P Y x X a xP Y x X a e
P X a

 


                            (1) 

Also 

( ) 1
0

x x axP X x e dx e      (2) 

From (1) and (2), we get  

( ) ( )   P Y x X a P X x  

i.e. ( | ) ( )P X x a x a P X x      

i.e. exponential distribution lacks memory. 

Example 14: Telephone calls arrive at a switchboard following an exponential distribution with 
parameter  = 12 per hour. If we are at the switchboard, what is the probability that the waiting time for 
a call is  

(i) atleast 15 minutes 

(ii) not more than 10 minutes. 

Solution: Let X be the waiting time(in hours) for a call  

( ) , 0
12( ) [ ] 1 1

  

       

xf x e x

x xF x P X x e e




                                 (1) 

[where   = 12] 

Now  

(i) P[waiting time is atleast 15 minutes]  

                            = P[waiting time is atleast 
1

4
 hours] 



Mathematical Statistics 111 

 

1 1
1

4 4
112 41 1

3 0.0498

    

 
  

 

   
      
 
 
 

P X P X

e

e

 

(ii) P[waiting time more than 10 minutes]  

                            = P[waiting time not more than 
1

6
hours] 

1121 61
6

21 1 (0.1353) 0.8647

 
   

    

 
  

P X e

e

 

Problems: 

1. Show that for the exponential distribution ( ) , 0xf x Ae x  , mean and variance are equal. 

2. Find the value of k>0 for which the function given by: 

( ) 2 , 0kxf x e x   

follows an exponential distribution.  

 

3.2.3 Normal Distribution 

The concept of normal distribution was initially discovered by English mathematician Abraham De 
Moivre (1667-1754) in 1733. The Normal Distribution is the most important and most widely used 
continuous probability distribution. It is the cornerstone of the application of statistical inference in 
analysis of data because the distributions of several important sample statistics tend towards a Normal 
distribution as the sample size increases. Empirical studies have indicated that the Normal distribution 
provides an adequate approximation to the distributions of many physical variables. Specific examples 
include meteorological data, such as temperature and rainfall, measurements on living organisms, scores 
on aptitude tests, physical measurements of manufactured parts, weights of contents of food packages, 
volumes of liquids in bottles/cans, instrumentation errors and other deviations from established norms, 
and so on. 

The normal distribution has a unique position in probability theory because it can be used as an 
approximation to most of the other distributions. 
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Examples of Normal Distribution 

1. The age at first calving of cows belonging to the same breed and living under similar 
environmental conditions tend to normal frequency distribution. 

2. The milk yield of cows in a large herd tends to follow a normal frequency distribution. 

3. The chemical constituents of milk like fat, SNF, protein etc., for large samples follow normal 
distribution. 

Definition: A r.v. X is said to have a normal distribution with parameters μ (called mean) and σ2 (called 
variance) if its p.d.f. is given by the probability law: 

21 1( ; , ) exp
22

      
   

xf x  
 

 

which may also be written as 

2( )
21 2( ; , )

2






x

f x e



 
 

   ; -∞ <x <∞, -∞ <μ <∞, σ >0 

 where  and    are the parameters. 

Remarks: 

1. It is customary to write X is normally distributed as N(μ, σ2) and is expressed by X ~ N(μ, σ2) 

2. If X ~ N(μ, σ2), then 


XZ 


 is a standard normal variate with E(Z)=0 and Var(Z) = 1 and we 

write Z  ~ N(0, 1) 

3. The p.d.f. of standard normal variate Z  is given by 

2
1 2( ) ;
2

z
z e z




      

and the corresponding distribution function, denoted by 
21 /2( ) ( ) ( )

2

z z uz P Z z u du e du 


    
 

 

Results: 

1. ( ) 1 ( ), 0Z Z Z      

2. ( ) ( ) ( ) 
   

b aP a X b   
 

 where X ~ N(μ, σ2) 

3. The graph of f(x) is famous “bell-shaped” curve. 
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The top of the bell is directly above the mean μ. For larger values of σ, the curve tends to flattened for 
small values of σ, and it has a sharp peak. 

 
The normal distribution has various properties and a large number of applications. The theory of 
estimation of population parameters and testing of hypothesis on the basis of sample statistics have also 
been developed using the concept of normal distribution as most of the sampling distribution tends to 
normally for large samples. 

Normal Distribution as a Limiting Case of Binomial Distribution 

Normal distribution as a limiting case of binomial distribution under the following conditions: 

1. n, the number of trials, is indefinitely large i.e., n→∞ 

2. neither p nor q is too close to zero. 

Under these conditions, the Binomial distribution can be closely associated by a normal distribution with 
a standardized variable given by  

, 0,1,2,...,
 

X npZ X n
npq

                                                     (1) 

The p.m.f. of the Binomial distribution with parameters n and p is given by: 

!( ) ; 0,1, 2,...,
!( )!

        

n nx n x x n xp x p q p q x n
x x n x

    (2) 

 When X = 0, 
  

np npZ
qnpq

and  

 When X = n, n np nqZ
pnpq


   

Thus in the limit as n→∞, Z takes the value from -∞ to ∞. 

Using Sterling’s approximation to r! for larger r. 

1( )2lim ! 2 .
rrr e rr 


   
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We have 

1
22lim ( ) lim 1 1
( )2 22 2 ( )

   
  

       

nn x n xe n p qp x
x n xn xxe x e n x



 

 

1 1
2 2( ) ( )lim 1 1

2 22 ( )

   
 

  
   

  

x n x
np nq

x n x
npqx n x

 

1 1
2 2

1 1
2 21 ( ) ( ) 1

lim lim1 12 2
2 2( )

x n x
x n x

np nq np nq
x n xnpq npqx n x

x n x
 

  

      
                      
  

              (3) 

From (1), we get  

1    
X qX np Z npq Z
np np

                                                 (4) 

Further 

1
        

n X pn X n np Z npq nq Z npq Z
nq nq

          (5) 

Also 
1

dZ dx
npq

 

Hence, the probability differential from equation (3) is  

1 1( ) ( ) lim
2

dG z g z dz dzn N
     

 

where 
1 1
2 2  

   
    
   

x n x
x n xN

np nq
 

1 1log log log
2 2

                 
      

x n xN x n x
np nq

   (Using 
X npZ

npq


  ) 

1 1log 1 log 1
2 2

q pnp z npq z nq z npq z
np nq

                      
         

 (using (4) and (5)) 
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3/2 3/21 1 1 1 1 12 3 2 3... ...2 2 3 2 2 3
p p pq q qnp z npq nq z npq znp np np nq nq nqz z z z z

   
             
             

             
   

            

 

3/2

3/2

3/21 1 1 1 12 3 2 3 2 ...
2 3 2 2 4

3/21 1 1 1 12 3 2 3 2 ...
2 3 2 2 4

1 2 2( ) ( ) ( ) (
2 2

q q q qz npq qZ z z q z z z
np npnp np

p p p pz npq pz z z p z z z
nq nqnq nq

z q pz p q z p q O n
p qn

                    
                     

        1/2)

2 2 21/2 /2( ) lim
2 2
z z zO n N en

 
 
 

    

Substituting in (6) 

we get 

21 /2( ) ( ) ;
2

zdG z g z dz e dz z


                                  (6a) 

Hence probability function of Z is 

21 /2( ) ;
2

zg z e z


                                   (6b) 

From (6b) using standard variate 


XZ 


 

We have 

2 21 ( ) /2 ,
( ) 2

0,

xe x
f xX

otherwise

 
 
     


 

Note: Normal distribution can also be obtained as a limiting case of Poisson distribution with the 
parameter    . 

Example 15: If X ~ N(40, 25), then write down the p.d.f. of X. 

Solution: X ~ N(40, 25) in usual notations, 

240, 25 25 5        { 0}   

Now, the p.d.f. of random variable X is given by 

22 1 401
1 1 522( ) ,
2 5 2

        
   

 
     

xx
f x e e x




  
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Problems: 

1. Write down the pdf of r.v. X 1 4( , )
2 9

N . 

2. Find the mean and variance if the p.d.f. is

2
1 8( ) ,

2 2

x

f x e x




      

Chief Characteristics of Normal Distribution: 

The normal probability distribution with mean μ and variance σ2 has the following properties: 

1. The curve of the normal distribution is bell shaped. 

2. The curve of the distribution is completely symmetrical about X = μ. 

3. For normal distribution, mean = median = mode. 

4. f(x) being the probability can never be negative and hence no portion of the curve lies below x-
axis. 

5. Though x-axis becomes closer and closer to the normal curve as the magnitude of the value of x 
goes towards ∞ or -∞, yet it never touches it. 

6. Normal curve has only one mode. 

 

 
7. Central moments of normal distribution are  

2

2 40, , 0, 31 2 3 4
and

0, 31
20, 1.3.5...(2 1)2 1 2
rrr r

     

 

  

   

 

   

 

                                                             (r = 0, 1, 2, …) 

(all odd order central moments are 0 for normal distribution)  

8. For normal curve Q3-Median = Median-Q1 
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9. Quartile deviation (Q.D.) =
23 1

2 3



Q Q

   of the standard deviation. 

10. Mean deviation ≈ 4/5 of the standard deviation. 

11. Q.D:M.D:S.D = 2 4: : 10 :12 :15
3 5

    

12. The point of inflexion of the curve are 

X     

13. If X1, X2, X3, … Xn are independent normal variables then the linear combination of a1X1 + a2X2 

+ a3X3...+ anXn is also normal variable with 

 mean a1μ1+ a2μ2+ a3μ3+...+    an μn and variance a1
2 σ1

2+ a2
2 σ2

2+ a3
2 σ3

2+… an
2 σn

2 

14. Particularly sum or difference of two independent normal variate is also normal variate. 

2 2( , )1 2 1 2
2 2( , )1 2 1 2

X Y N

X Y N

   

   

  

  




 

15. Area property: 

[ ] ( ) 0.6827

2
[ 2 2 ] ( ) 0.9544

2
3

[ 3 3 ] ( ) 0.9973
3


     




     



     


P X f x dx

P X f x dx

P X f x dx

 
   

 
 

   
 
 

   
 

 

Mode and Median of Normal Distribution 

Mode: Mode is the value of x for which f(x) is maximum, i.e. mode is the solution of  

                       '   0 '',  0f x f x   

Now let X ~ N(μ, σ2), the p.d.f. of X is  

1 2( )1 2( ) ,
2


  

x
f x e x




 
                                 (1) 

Taking log on both side 

1 1 2log ( ) log ( ) log22 2
  f x x e

  
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1 1 2log ( )22 2
  x 

  
 

Differentiating w.r.t. x 

1 1'( ) 0 2( )2 2( ) 2
( )'( ) ( )2


    


  

xf x x
f x

xf x f x


 




                              (2) 

For maximum or minimum 

'( ) 0 ( ) 02

0

 
   

 
    

xf x f x

x x




 

 

 as f(x) is never zero. 

Now differentiate (2) w.r.t. ‘x’, we have 

( ) 1'' '( ) ( ) ( )2
xf x f x f xx x x


   


     

( )''( ) 02


 
ff x x





 

∴x = μ is Mode. 

Median: We know that median M divides the distribution into two equal parts. 

1 1( ) ( ) ( )
2 2

21
1 12 ( )

22

 
  
 


     

 


   



M M
f x dx f x dx f x dx

M
x M

e dx f x dx
 

 

 

In the first integral, let us put  

x z

dx dz









 

 

Also when x = μ 0z   and when x→-∞ z   

We have 
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10 2 11 ( )2 22

1 1( )2 2

( ) 0

Mze dz f x dx

M
f x dx

M
f x dx

M








   


  

 

 

 

as f(x)≠0 

Hence Mean = Median = Mode = μ 

Mean Deviation about Mean 

Mean deviation about mean for normal distribution is  

21
1 2( )
2

 
  
 

 
   

 

x
x mean f x dx x e dx




 
 

Put x dxz dz
 


    

M.D. about mean 
1 2
2

2

z
z e dz






 


 

M.D. about mean 
1 2

2 2
02

z
z e dz






   

{ If f(x) is even function ( ) 2 ( )
0

 


a a
f x dx f x dx

a
} 

Put 
2 2 2 2 2
2
z t z t zdz dt zdz dt        

M.D. about Mean 
2 22

[ 0 1]
02

 
    

t
e dt


 

 
 

M.D. about Mean = 
2 4

5
 


(approx.) 
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m.g.f. of Normal Distribution 

The m.g.f. (about origin) is given by: 

tx
XM (t) e f (x )dx


 


 

2 2

2 2

2

t 2

t 2 2 2

t t /2 2

t t /2 2

1 xexp{t( z)}exp( z / 2)dz z
2

1 1e exp (z 2t z) dz
22

1 1e exp {(z t) t } dz
22

1 1e exp (z t) dz
22

1e exp( u / 2)du
2
















  




  



         

     
  

       

      

 












 

Hence 
2 2t t / 2M (t) eX

                                                                                     (1) 

Note:  

m.g.f. of Standard Normal Variate: If 2X N( , )  , then standard normal variate  is given by  

Z (X ) /     

  t / 2 2 2 2
Z XM (t) e M (t / ) exp( t / ) exp t / (t / )( / 2) exp(t / 2)            (1a) 

Cumulant Generating Function (C.G.F) of Normal Distribution 

The c.g.f of normal distribution is given by: 

2 2
2 2

t t /2
X e X e

tK (t) log M (t) log (e ) t
2

   
     

∴Mean = 1  = coefficient of t in XK (t) =μ 

Variance = 2 = coefficient of 
2t

2!
 in XK (t)= 2  

and r = coefficient of 
rt

r!
 in XK (t)= 0; r=3,4… 

Thus 2 4
3 3 4 4 20 and 3 3          
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Hence 
2
3 4

1 23 2
2 2

0 and 3 
     

 
                                                                              (2) 

Moments of Normal Distribution: Odd order moments about mean are given by: 

 2n 1 2n 1 2 2
2n 1

1(x ) f (x)dx (x ) exp (x ) / 2 dx
2

 
 


 

       
    

 2n 1 2
2n 1

1 x( z) exp (z) / 2 dz z
2







          

 
2n 1

2n 1 2
2n 1 (z) exp (z) / 2 dz 0

2








   

                                                                              (3) 

Since the integrand 
22n 1 z /2z e   is an odd function of z. 

Even order moments about mean are given by: 

 2n 2n 2
2n

1(x ) f (x)dx ( z) exp (z) / 2 dx
2

 

 

     
   

   
2n 2n

2n 2 2n 2

0

(z) exp (z) / 2 dz 2 (z) exp (z) / 2 dz
2 2

 



 
   

    

2n 2
t n

0

2n n
t (n 1/2) 1

0
2n n

2n

2 dt ze (2t) 0, (t )
22 2t

2 e t dt 0

2 1n
2





  


  




 



         



  

Changing n to (n-1), we get 
n 1 2n 2

2n 2

2 22n

2n 2

2 . 1n
2

1n
122 . 2 n

1 2n
2

 





        
                  
 

 

2(2n 1)2n 2n 2                      (4)   (r) (r 1) (r 1)      

Which gives the recurrence relationfor the moments of normal distribution. From(4), we have 
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2 2

2n 2n 4
2 2 2

2n 6
2 2 2 2 2

0
2n

[(2n 1) ][(2n 3) ]
[(2n 1) ][(2n 3) ][(2n 5) ]
[(2n 1) ][(2n 3) ][(2n 5) ]...(3 )(1 )
1.3.5...(2n 1)





      

       

         

                                                 (5) 

From (3) and (5), we conclude that for the normal distribution all odd order moments about mean vanish 
and even order moments about mean are given by (5). 

A Linear Combination of Independent Normal Variates is also a Normal Variate:  

Let iX ,(i 1,2,3,...,n) be n independent normal variates with mean i and variance 2
i  respectively. 

Then  

 
i

2 2
X i iM (t) exp t (t / 2)                                                                                 (7) 

The m.g.f. of their linear combination
n

i i
i 1

a X

 , where ia , 2a , …, na are constants is given by 

i ii i

n

a Xa X
i 1

M (t) M (t)


                                                        ( iX 's  are independent) 

1 2 nX 1 X 2 X n cX XM (a t).M (a t)...M (a t) [ M (t) M (ct)]                (8) 

From (7), we have 
iX i

2 2 2a t t a / 2i i i iM (a t) e
  

  

2 2 2 2 2 2 2 2 2a t t a / 2 a t t a / 2 a t t a / 21 1 1 1 2 2 2 2 n n n nM (t) e e ... ea Xi ii

        
    


                  (From 

8) 

n n
2 2 2

i i i i
i 1 i 1

exp ( a )t t ( a ) / 2
 

 
    

 
   

which is the m.g.f. of a normal variate with mean 
n

i i
i 1

( a )


  and variance
n

2 2
i i

i 1
( a )



 . 

Hence by uniqueness theorem of m.g.f., 

n n n
2 2

i i i i i i
i 1 i 1 i 1

( a X ) N a , a
  

 
  

 
                                                                                     (8a) 
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Remarks: 

1. If we take 2 2
1 2 3 4 1 2 1 2 1 2a a 1,a a ... 0, then X X N( , )           

If we take 2 2
1 2 3 4 1 2 1 2 1 2a 1,a 1,a a ... 0, then X X N( , )           

Thus we see that the sum as well as the difference of two independent normal variates is also a normal 
variable. This result provides a sharp contrast to the Poisson distribution, in which case though the sum 
of two independent Poisson variates is a Poisson variate, the difference is not a Poisson variate. 

2. If we take 
n n n

2
1 2 n i i i

i 1 i 1 i 1
a a a ... 1, then X N( , )

  

                                  (8b)  

i.e., the sum of independent normal variates is also a normal variate, which establishes the additive 
property of the normal distribution. 

3. If iX ;i 1,2,...,n  are identically and independently distributed as 2N( , )   and if we take

1 2 na a ... a 1/ n     , then 

n n n n
2 2

i i2
i 1 i 1 i 1 i 1

1 1 1 1X N , , X N( , / n) , where X X
n n n n   

 
      

 
      

 This leads to the following important conclusion: 

If iX ;i 1,2,...,n  are identically and independently distributed normal variates with mean  and 

variance 2 , then their mean 2X N( , / n)  . 

Area Property (Normal probability integral) 

If X ~ N(μ, σ2), then the probabilitythat random value of X will lie between X = μ and X = 1x  is given 
by: 

2( )
1 11 22( ) ( )1 2


    

xx x
P X x f x dx e dx




  
 

Put 
   

X Z X Z  


 

When X = μ, Z = 0 and when X = x1, Z = 1x 


 = Z1 

2
1 11 2( ) (0 ) ( )1 1 0 02


        

Zz z
P X x P Z z e dZ Z dZ 


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where 

2
1 2( )
2




Z
Z e


 is the probability function of standard normal variate. The define integral 

1
( )

0

z

Z dZ  is known as standard normal probability integral and given the area under standard normal 

curve between the ordinates at Z =0 and Z = z1. These areas have been tabulated for different values of 
z1, at intervals gap of 0.01 in a table gives at the end of the chapter. 

In particular, the probability that a random value of X lies in the interval (μ-σ, μ+σ) is given by: 

( ) ( )


   


 P fX x dx
 

   
 

 

,when X= - ,Z= 11
( 1 1) ( )

1 when X= , Z= 1

1
2 ( ) By symmetry

0

2 0.3413 0.6826

XZ
P Z Z dZ

Z dZ

    
 

   




   
  

      
      

    

  



 

Similarly  

 
2

( 2 ) ( ) 2 ( ) 2 0.4772 0.9544
0


          


P X f x dx Z dZ

 
    

 
 

And 
3 3

( 3 3 ) ( 3 3) ( ) 2 ( )
3 0

          


P X P Z Z dZ Z dZ       

                                                     2×0.49865 = 0.9973 

Thus the probability that a normal variate X lies outside the range μ±3σ is given by: 

( 3 ) ( 3) 1 ( 3 3) 0.0027         P X P Z P Z   
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Thus, all probability of normal variate we should expect to lie within the range μ±3σ, though 
theoretically, it may range from -∞ to ∞. From the discussion, it is clear that while solving numerical 
problems, we need to transform the given normal variate into a standard normal variate. The reason 
behind this is that area under different normal curves being infinitely many cannot be made available 
whereas the standard normal curve is one and hence table for each area under this curve can be made 
available. 

Example 16: For a certain normal distribution, the first moment about 10 is 40 and the fourth moment 
about 50 is 48. What is the arithmetic mean and standard deviation of the distribution? 

Solution: We know that if μ1
’ is the first moment about the point X=A, the arithmetic mean is given by: 

Mean = A+ μ1
’ 

We are given: μ1
’ (about the point X = 10) = 40 

  Mean = 10+40 = 50 

Also μ4
’ (about the point X = 50) = 48, i.e. μ4 = 48 

But for a normal distribution with standard deviation σ  

4 43 3 48 24          

Example 17: X is a normal variable with mean 30 and S.D. 5. Find the probabilities that 

(i) 26≤X≤40 

(ii) X≥45 

(iii) 30 5 X  

Solution: Here μ = 30 and σ = 5 

(i) When X = 26, 
26 30

0.8
5

 
   

X
Z




 

and when X = 40, 
40 30

2
5


 Z  

(26 40) ( 0.8 2) ( 0.8 0) (0 2)P X P Z P Z P Z               

(0 0.8) (0 2)

0.2881 0.4772 0.7653

     

  

P Z Z
 

(ii) When x = 45,  

Z = 
45 30

3
5



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 ( 45) ( 3)

0.5 (0 3) 0.5 0.49865 0.00135

   

      

P X P Z

P Z
 

(iii)  

( 30 5) (25 35) ( 1 1)

2 (0 1) 2 0.3413 0.6826

( 30 5) 1 ( 30 ) 5 1 0.6826 0.3174

        

     

         

P X P X P Z

P Z

P X P X

 

Example 18: Two independent random variate X and Y are both normally distributed with means 1 and 
2 and standard derivations 3 and 4 respectively. If Z = X-Y, write the probability density function of Z. 
Also state the median, S.D. and mean of the distribution of Z. Find probability (Z+1≤0). 

Solution: Since X ~ N(1, 9) and Y ~ N(2, 16) are independent, 

       Z = X - Y ~ N(1 - 2, 9 + 16) 

i.e. Z = X - Y ~ N(-1, 25) 

Hence p.d.f. of z is given by 

2
1 1 1

( ) exp ,
2 55 2

z
p z z




     

  
  

   
 

For the distribution of Z 

Median = mean = -1 and S.D. = √25 = 5 

and P(Z+1<0) = P(Z≤-1) = P(U≤0) = 0.5
1

(0,1)
5




 
  


Z

U N  

Example 19: If the r.v. X is normally distributed with mean 80 and standard deviation 5, then find 

(i) P[X>95] (ii)P[X<72](iii) P[60.5<X<90] 
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Solution: Here (80, 25)X N  

Mean= 280 and variance = =25    

If Z is the standard normal variate then 80
5

X XZ 

 

   

(i) For X=95,  

95 80 3
5

[ 95] [ 3]
0.5 [0 3]

                    =0.5-0.4987=0.0013
                               

Z

P X P Z
P Z


 

   
     

(ii) For X=72,  

72 80 1.6
5

[ 72] [ 1.6]
[ 1.6]

                    =0.5- [0 1.6]=0.0548
                               

Z

P X P Z
P Z

P Z


  

    
 

 
 

(iii)  X=60.5, 60.5 80 3.9
5

Z 
    

X=90, 90 80 2
5

Z 
   

 

[60.5 90] [ 3.9 2]
[ 3.9 0] [0 2]

                    = [0 3.9] [0 2]
                    =0.5000+0.4772
                    =0.9772                               

P X P Z
P Z P Z

P Z P Z

      
      

      

Example 20: If X, and Y are independent normal variates with means 6, 7 and variances 9, 16 
respectively, determine  such that P(2X Y ) P(4X 3Y 4 )       . 

Solution: Since X and Y are independent normal variates, then 

U 2X Y N(2 6 7,4 9 16), i.e., U N(19,52)
V 4X 3Y N(4 6 3 7,16 9 9 16), i.e., V N(3,288)
     
       

 
 

 



128 Discrete and Continuous Distributions 

19and P(2X Y ) P(U ) P(Z ), where Z N(0,1)
52

4 3and P(4X 3Y 4 ) P(V 4 ) P(Z ), where Z N(0,1)
12 2

 
       

 
       




 

Now P(2X Y ) P(4X 3Y 4 )        (given) 

19 4 3P(Z ) P(Z )
52 12 2

 
    19 4 3

52 12 2
     

 
 

[Since, P(Z a ) P(Z b) a b      , because normal probability curve is symmetric about Z=0] 

19 3 4 114 2 3 13(6 2 4 13) 114 2 3 13
13 6 2 6 2 4 13

   
        


 

Example 21: In a university the mean weight of 1000 male students is 60kg and standard deviation is 
16kg. 

(a) Find the number of male students having their weights less than 55kg 

 (b) What is the lowest weight of the 100 heaviest male students? 

(Assuming that the weights are normally distributed) 

Solution: Let X be a normal variate, “The weight of the male students of the university”. Here, we are 
given that mean = 60kg and standard deviation = 16kg, therefore 

X N (60, 256)  

We know that if 2X N( , )  , then the standard normal variate is given by XZ  



 

Hence, for the given information, X 60Z
16


  

(a)For 55 60X 55, Z 0.3125 0.31
16


      

Therefore, 

 
P[X 55] P[Z 0.31] P[Z 0.31]

0.5 P[0 Z area on both sides of  Z 0 is 0.31] 50.
     

    
 

0.5 0.1217 0.3783    [using table area under normal curve] 

∴ Number of male students having weight less than 55 is  

1000 3783 378    
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(b) Let 1x  be the lowest weight amongst 100 heaviest students. 

Now for 

1
1 1

1

1

1

1

1

x 60X x , Z z (say)
16

100P[X x ] 0.1 (see fig5.2)
1000

P[Z z ] 0.1
P[0 Z z ] 0.5 0.1 0.4
z 1.28
x 60 16 1.28 60 20.48 80.48


  

  

  
     
 
      

 

Therefore, the lowest weight of 100 heaviest male students is 80.48kg. 

 
(area representing the 100 heaviest male students) 

Example 22: In a normal distribution 10% of the items are over 125 and 35% are under 60. Find the 
mean and standard deviation of the distribution. 

Solution: Let 2X N( , )  , where  and 2 are unknown and are to be obtained. 

 
(Area representing the items under 60 and over 125) 

Here we are given 
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P[X 125] 0.1 and P[X 60] 0.35    [see fig ] 

We know that if 2X N( , )  , then XZ  



 

For X = 60, 60Z  



= - 1z  (say)                               (1)     

 [-ve sign is taken because P[Z 0] P[Z 0] 0.5    ] 

For X = 125, 125Z  



 = 2z (say)                             (2) 

Now  

 
1

1 e
P[X 60] P[Z z ] 0.35

P[Z z ] 0 by symmet3 f. 5 ry o  normal curv
    

  
 

1

1

1

0.5 P[0 Z z ] 0.35
P[0 Z z ] 0.15
z 0.39

    
   
 

 

[from the table area under normal curve] 

And  

 

2

2

2

2 e

P[X 125] p[Z z ] 0.10
0.5 P[0 Z z ] 0.1

h

0
P[0 Z z ] 0.4

f
0

rom t e taz 1 8 bl.2

   
    
   

 

 

Putting the values of 1z   and 2z  in eq. (1) and (2), we get 

60 0.39
 


                                                              (3) 

125 1.28 



                                                                (4) 

(4)-(3) gives 

125 60 1.28 0.39

65 651.67 38.92
1.67

 
 



   


 

From eq. (4), 125 1.28 125 1.28 38.92 75.18           

Hence = mean =75.18; σ = S.D. = 38.92    
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Problems: 

1. X is normally distributed and the mean of X is 12 and S.D. is 4.  

(a) Find out the probability of the following: 

(i) X ≥20  

(ii) X ≤20 

(iii) 0 ≤X ≤12 

(b) Find x’ when P(X >x’) = 0.24 

2. If (30,16),   then  find   in  each  caseX N   

( ) [ ] 0.2492
( ) [ ] 0.0496
i P X
ii P X




 
 

 

3. Average lactation yield for 1000 cows maintained at a farm is 1700 kg and their standard 
deviation is 85 kg. A cow is considered as high yielder if it has a lactation yield greater than 
1900 kg and poor yielder if it has lactation yield less than 1600 kg. Find the number of high 
yielding and poor yielding cows. 

4. If 100 true coins are thrown, how would you obtain an approximation for the probability of 
getting (i) 55 heads, (ii) 55 or more heads, using tables of Area of normal probability function? 

5. In a particular branch of a bank, it is noted that the duration/waiting time of the customers for 
being served by the teller is normally distributed with mean 5.5 minutes and standard deviation 
0.6 minutes. Find the probability that a customer has to wait 

a) between 4.2 and 4.5 minutes, (b) for less than 5.2 minutes, and (c) more than 6.8 minutes 

Importance of Normal Distribution 

Normal distribution plays a very important role in statistics because 

(i) Most of the discrete probability distributions occurring in practice e.g., Binomial and Poisson 
can be approximated to normal distribution as n number of trials tends to increase. 

(ii) Even if a variable is not normally distributed, it can be sometimes brought to normal by a 

simple mathematical transformation, if the distribution of X is skewed, the distribution of x
or log x might come out to be normal. 

(iii) If X~N(μ,σ2) then P [μ−3σ < x < μ+3σ] =0.9973 ⇒ [|Z|˃3] = 1− 0.9973=0.0027. Thus the 
probability of standard normal variate going outside the limits 3 is practically zero. This 
property of normal distribution forms the basis of entire large sample theory. 

(iv) Many of the sampling distribution e.g., students t, Snedecors F, Chi square distributions etc 
tend to normality for large samples. Further, the proof of all the tests of significance in the 
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sample is based upon the fundamental assumptions that the populations from which the 
samples have been drawn are normal. 

(v) The whole theory of exact sample (small sample) tests viz. t , χ2, F etc, is based on the 
fundamental assumption that the parent population from which the samples have been drawn 
follows normal distribution. 

(vi) Normal distribution finds large applications in statistical quality control in industry for setting 
up of control limits. 

(vii) Theory of normal curves can be applied to the graduation of the curve which is not normal. 

Fitting of Normal Distribution 

In order to fit normal distribution to the given data we first calculate the mean μ and standard deviation 
σ from the given data. Then the normal curve fitted to the given data is given by: 

 2 21f (x) exp (x ) / 2 , x
2

     
 

 

To calculate the expected normal frequencies we first find the standard normal variates corresponding to 

the lower limits of each of the class intervals, i.e., we compute '
i iz (x ) /   , where '

ix is the lower 

limits of the ith class intervals. Then the areas under the normal curve to the left of the ordinates at 

iz z , say i i(z ) P(Z z )    are computed from the tables. Finally, the areas for the successive class 

intervals are obtained by subtraction, viz, i 1 i(z ) (z ),(i 1,2,...)    and on multiplying these areas by 

N , we get the expected normal frequencies. 

Example 23: Obtained the equation of the normal curve that may be fitted to the following data: 

Class 60-65 65-70 70-75 75-80 80-85 85-90 90-95 95-100 

frequency 3 21 150 335 326 135 26 4 

 

Also obtained the expected normal frequencies. 

Solution: For the given data, N 1000, 79.945 and 5.545    

Hence the equation of the normal curve fitted to the given data is: 

  2
x 79.9451000 1f (x) exp

2 5.5452 5.545

      
     
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class Lower 
class 

Boundary 
(X’) 

X 'z  



 2

z
u /21(z) e du

2




 
   Z 1 Z(Z)     Expected 

frequency 

N (z)   

Below 
60 

-∞ -∞ 0 0.000112 0.12≡0 

60-65 60 -3.663 0.000112 0.002914 2.914≡3 

65-70 65 -2.745 0.003026 0.031044 31.044≡31 

70-75 70 -1.826 0.034070 0.147870 147.870≡148 

75-80 75 -0.908 0.181940 0.322050 322.050≡322 

80-85 80 0.010 0.503990 0.919300 319.300≡319 

85-90 85 0.928 0.823290 0.144072 144.072≡144 

90-95 90 1.487 0.997154 0.029792 29.792≡30 

95-
100 

95 2.675 0.997154 0.002733 2.733≡3 

100 
and 
over 

100 3.683 0.999887   

Total 1,000 

Problems: 

1. For a certain normal distribution, the first moment about 10 is 40 and the fourth moment about 50 
is 48. What is the arithmetic mean and standard deviation of the distribution? 

2. X is normally distributed and the mean of X is 12 and S.D is 4. 

(a) Find out the probability of the following: 

(i) X 20 (ii) X 20  and (iii) 0 X 12   

(b) Find x '  , when P (X x ') 0.24   

(c) Find '
0x and 1x ', when 0 1P(x ' X x ') 0.50    and 1P(X x ') 0.25   
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Value of e- (for computing Poisson Probabilities) 

                                                                    (0<<I) 

 0 1 2 3 4 5 6 7 8 9 

0.0 1.0000 0.9900 0.9802 0.9704 0.9608 0.9512 0.9418 0.9324 0.9231 0.9139 

0.1 0.9048 0.8958 0.8860 0.8781 0.8694 0.8607 0.8521 0.8437 0.8353 0.8270 

0.2 0.7187 0.8106 0.8025 0.7945 0.7866 0.7788 0.7711 0.7634 0.7558 0.7483 

0.3 0.7408 0.7334 0.7261 0.7189 0.7118 0.7047 0.6970 0.6907 0.6839 0.6771 

0.4 0.6703 0.6636 0.6570 0.6505 0.6440 0.6376 0.6313 0.6250 0.6188 0.6125 

0.5 0.6065 0.6005 0.5945 0.5886 0.5827 0.5770 0.5712 0.5655 0.5599 0.5543 

0.6 0.5448 0.5434 0.5379 0.5326 0.5278 0.5220 0.5160 0.5113 0.5066 0.5016 

0.7 0.4966 0.4916 0.4868 0.4810 0.4771 0.4724 0.4670 0.4630 0.4584 0.4538 

0.8 0.4493 0.4449 0.4404 0.4360 0.4317 0.4274 0.4232 0.4190 0.4148 0.4107 

0.9 0.4066 0.4026 0.3985 0.3946 0.3906 0.3867 0.3791 0.3791 0.3753 0.3716 

                                                                (=1,2,3,… , 10) 

 1 2 3 4 5 6 7 8 9 10 

e- 0.3679 0.1353 0.0498 0.0183 0.0070 0.0028 0.0009 0.0004 0.0001 0.00004 

Note: To obtain values of e- for other values of , use the laws of exponents i.e.  

e-(a+b) = e-a. e-b 

e.g. e-2.25= e—2. e—0.25=(0.1353).( 0.7788)=0.1054 
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TABLE1 

The entries in

shaded under

z 0.00 

0.0   0.004

0.1   0.043

0.2   0.083

0.3   0.121

0.4   0.159

0.5   0.195

0.6 0.229

0.7   0.261

0.8   0.291

0.9   0.318

1.0   0.343

1.1   0.366

1.2   0.386

1.3   0.404

1.4   0.420

1.5   0.434

1.6   0.446

1.7   0.456

1.8   0.464

1.9   0.471

2.0   0.477

Statistics 

Normal 

n the body o

r the normal

0.01 

40 0.0080 

38 0.0478 

32 0.0871 

17 0.1255 

91 0.1628 

50 0.1985 

91 0.2324 

11 0.2642 

10 0.2939 

86 0.3212 

38 0.3461 

65 0.3686 

69 0.3888 

49 0.4066 

07 0.4222 

45 0.4357 

63 0.4474 

64 0.4573 

49 0.4656 

19 0.4726 

78 0.4783 

Curve Are

of the table c

l curve. 

0.02 

0.0120 

0.0517 

0.0910 

0.1293 

0.1664 

0.2019 

0.2357 

0.2673 

0.2967 

0.3238 

0.3485 

0.3708 

0.3907 

0.4082 

0.4236 

0.4370 

0.4484 

0.4582 

0.4664 

0.4732 

0.4788 

as: 

correspond to

0.03 0

0.0160 0

0.0557 0

0.0948 0

0.1331 0

0.1700 0

0.2054 0

0.2389 0

0.2703 0

0.2995 0

0.3264 0

0.3508 0

0.3729 0

0.3925 0

0.4099 0

0.4251 0

0.4382 0

0.4495 0

0.4591 0

0.4671 0

0.4738 0

0.4793 0

o the area 

0.04 0.05

0.0199 0.02

0.0596 0.06

0.0987 0.10

0.1368 0.14

0.1736 0.17

0.2088 0.2

0.2422 0.24

0.2734 0.27

0.3023 0.30

0.3289 0.33

0.3531 0.35

0.3749 0.37

0.3944 0.39

0.4115 0.4

0.4265 0.42

0.4394 0.44

0.4505 0.45

0.4599 0.46

0.4678 0.46

0.4744 0.47

0.4798 0.48

5 0.06 

239 0.0279

636 0.0675

026 0.1064

406 0.1443

772 0.1808

123 0.2157

454 0.2486

764 0.2794

051 0.3078

315 0.3340

554 0.3577

770 0.3790

962 0.3980

131 0.4147

279 0.4292

406 0.4418

515 0.4525

608 0.4616

686 0.4693

750 0.4756

803 0.4808

0.07 

9 0.0319 

5 0.0714 

4 0.1103 

3 0.1480 

8 0.1844 

7 0.2190 

6 0.2517 

4 0.2823 

8 0.3106 

0 0.3365 

7 0.3599 

0 0.3810 

0 0.3997 

7 0.4162 

2 0.4306 

8 0.4429 

5 0.4535 

6 0.4625 

3 0.4699 

6 0.4761 

8 0.4812 

0.08 0

0.0359   

0.0753  

0.1141  

0.1517  

0.1879  

0.2224  

0.2549  

0.2852  

0.3133  

0.3389  

0.3621  

0.3830  

0.4015  

0.4177  

0.4319 0

0.4441 0

0.4545 0

0.4633 0

0.4706 0

0.4767 0

0.4817 0

135 

0.09 

.0000 

0.0398 

0.0793 

0.1179 

0.1554 

0.1915 

0.2257 

0.2580 

0.2881 

0.3159 

0.3413 

0.3643 

0.3849 

0.4032 

0.4192 

0.4332 

0.4452 

0.4554 

0.4641 

0.4713 

0.4772 
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2.1   0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 0.4821 

2.2   0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 0.4861 

2.3   0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 0.4893 

2.4   0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 0.4918 

2.5   0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 0.4938 

2.6   0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964  0.4953 

2.7   0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 0.4965 

2.8   0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 0.4974 

2.9   0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986  0.4981 

3.0   0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990 0.4987 

3.1   0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993  0.4990 

3.2   0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995  0.4993 

3.3   0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997  0.4995 

3.4   0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998 0.4997 

3.5   0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 

3.6   0.4998 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999  0.4998 

3.7   0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 

3.8   0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 

3.9   0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000  0.5000 
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SAMPLING THEORY 

Structure 

4.1 Introduction 
 4.1.1 Basic Definitions 
4.2 Parametric and Statistic 
4.3 Sampling Distribution  
4.4 Standard Error 
          4.4.1 Utility of Standard Error 
4.5 Statistical Hypothesis 
 4.5.1 Null Hypothesis 
 4.5.2 Alternative Hypothesis 
 4.5.3 Simple Hypothesis 
 4.5.4 Composite Hypothesis 
4.6 Two Types of Errors  
4.7 Critical Region and Level of Significance 
4.8 One Tailed and Two Tailed Tests 
4.9 Critical Values  
4.10 Tests of Significance 
 4.10.1 Test of Significance for Large Samples 

4.10.2 Test of Significance for Single Proportion 
4.10.3 Test of Significance for Difference of Proportions 
4.10.4 Test for significance of Single Mean 
4.10.5 Test of significance for Difference of Means 

4.1 Introduction 

The science of statistics may broadly be studied under the two heads descriptive and inductive. So far 
we have confined ourselves to descriptive statistics which help us in describing the characteristics of 
numerical data. In other parts i.e., inductive statistics are also known as statistical inference which is 
termed as logic of drawing valid statistical conclusions about the population in any statistical 
investigation based on examining a part of the population known as Sample. It is scientifically drawn 
from the population. In all the spheres of life (such as economic, social, scientific, industry etc.) the need 
for statistical investigation and data analysis is increasing day by day. There are two methods of 
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collection of statistical data i.e. census and sample method. Under census method, information related to 
the entire field of investigation or units of the population is collected; whereas under sample method, 
rather than collecting information about all the units of the population, information relating to only 
selected units is collected.  

4.1.1 Basic Definitions 

Population: In any statistical investigation, our interest lies in the assessment of the general magnitude 
and the study of variation with respect to one or more characteristics relating to individuals belonging to 
a group. The group of individuals under study is called population or universe. In general, we can say 
that a universe or population means the entire field under investigation about which knowledge is 
sought. It is a collection of objects, animate or inanimate or anything conceivable pertaining to certain 
characteristics that we want to study/test. The collection of objects could be cities, students, factories, 
etc. A population can be of two kinds (i) Finite and (ii) Infinite. In a finite population, number of items 
is definite such as number of students or teachers in a college, daily milk yield of 500 milch animals in a 
livestock farm. On the other hand, an infinite population has infinite number of items e.g. the population 
of pressures at various points in the atmosphere, the population of real numbers between 0 and 1, the 
population of all integers, number of water drops in an ocean, number of leaves on a tree or number of 
hairs on the head etc. 

Sample: In the real world, its tough task to get complete information about the population. Hence, we 
draw a sample out of that population and derive the same statistical measures mentioned above. 
Therefore, a finite subset of the population, selected from it by using scientific procedure with the 
objective of investigating its properties is called a sample. In other words, selected or sorted units from 
the population are known as a sample. Thus, sample means some units selected out of a population that 
represents it. For example, if an investigator selects 100 animals from 2000 animals in a herd then these 
100 animals will be termed as a sample and number of the individuals in the sample is called a sample 
size. 

Sampling: The process of selecting a sample is called sampling. It is a tool that enables us to conclude 
the characteristics of the population after studying only those items which are included in the sample. 
Sampling is quite often used in our day-to-day practical life. For example: in a shop, we assess the 
quality of sugar, wheat or any other commodity by taking a handful of it from the bag and then decide to 
purchase it or not. A housewife normally tests whether food is properly cooked and contains the proper 
quantity of salt. The main objective of sampling is 

 To obtain the maximum information about the characteristics of the population with the available 
sources e.g. time, money, manpower etc. 

  To obtain best estimates of the population parameter 

Types of Sampling 

There are various methods of sampling that may be used singly or along with others. The choice of 
appropriate sampling design is of paramount importance in the execution of a sample survey and is 
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generally made keeping in view the objectives and scope of the inquiry and the nature of the population 
to be sampled. The sampling techniques may be broadly classified as follows: 

1. Purposive or Subjective or Judgment Sampling 

2. Probability Sampling 

3. Simple random sampling 

4. Stratified Random Sampling 

5. Cluster Sampling 

6. Multi-stage sampling 

1. Purposive or Subjective or Judgment Sampling 

In this method of sampling, the choice of the sample items depends exclusively on the judgment of the 
investigator. The desired number of sample units are selected deliberately or purposively depending 
upon the object of the inquiry so that only the important items representing the true characteristics of the 
population are included in the sample. Purposive sampling is one in which the sample units are selected 
with a definite purpose in view. This type of sampling suffers from the drawback of favouritism and 
nepotism depending upon the beliefs and prejudices of the investigator and thus does not give a true 
representation to the population. 

2. Probability Sampling 

Probability sampling provides a scientific technique of drawing samples from the population according 
to some laws of chance in which each unit in the universe has some definite pre-assigned probability of 
being selected in the sample. The selection of the sample based on the theory of probability is also 
known as the random selection and the probability sampling is also called Random Sampling. Different 
types of sampling are: 

(i) Each sample unit has an equal chance of being selected 

(ii) Sampling units have varying probability of being selected 

(iii) Probability of selection of a unit is proportional to the sample size. 

3. Simple Random Sampling 

Simple random sampling (S.R.S.) is the technique in which the sample is drawn in such a way that every 
unit in the population has an equal and independent chance of being included in the sample. Suppose we 
take a sample of size n from a finite population of size N. Then there are NCn possible samples. A S.R.S. 
is a technique of selecting the sample in which each of  NCn samples has an equal chance or probability p 
= 1/ NCn of being selected. 

4. Stratified Random Sampling 

Stratified random sampling is one where the population is divided into mutually exhaustive strata or 
sub-groups and then a simple random sample is selected within each strata or sub-group e.g. cows in a 
big herd can be divided into different strata based on breed, age groups, body weight groups, lactation 
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length, lactation order, daily/lactation milk yield groups, etc. The criterion used for the stratification of 
the universe into various strata is known as the stratifying factor. In general, geographical, sociological 
or economic characteristics form the basis of stratification of the given population. Some of the 
commonly used stratifying factors are age, sex, income, occupation, educational level, geographical 
area, and economic status, etc.  

5. Cluster Sampling 

When the population size is very large, the previously mentioned sampling methods lead to several 
difficulties. The sampling frame is not available and it is too expensive and time consuming to prepare 
it. The other difficulties are firstly the high cost and administrative difficulty of surveying widely 
scattered sampling units and secondly the elementary units may not be easily identifiable and locatable. 
In such cases, cluster sampling is useful. In this case, the total population is divided, depending upon on 
problem under study, into some recognizable sub-divisions which are termed as clusters. A specified 
number of clusters are selected at random, and the observation is made on all the units in the sampled 
clusters. We then observe, measure and interview for every unit in the selected clusters. The clusters are 
called the primary units. Cluster sampling is also known as area sampling.For example, the cluster may 
be consisting of all households in a village and hence there are as many clusters as the number of 
villages in a district. It may be noted that the cluster is a heterogeneous sub-population whereas the 
stratum is a homogeneous sub-population. 

6. Multistage Sampling 

Instead of enumerating all the sampling units in the selected clusters, one can obtain better and more 
efficient estimators by resorting to sub-sampling within the clusters. The technique is called two-stage 
sampling, clusters being termed as primary units and the units within the clusters as secondary units. The 
above technique may be generalized to what is called multistage sampling. As the name suggests, 
multistage sampling refers to a sampling technique that is carried out in various stages. Here the 
population is regarded as a secondary stage unit in which we are interested. For example, if we are 
interested in obtaining consisting of severalof primary units each of which is further composed of 
severalof a sample of, say, n households from a particular state the first stage units may be districts and 
second stage units may be villages in the districts and third stage units will be households in the villages. 
Each stage thus results in a reduction of the sample size. Multistage sampling is more flexible as 
compared to other methods of sampling.  

 4.2 Parameter and Statistic 

The statistical constants of the population like mean (μ), variance (σ2), skewness (β1), kurtosis (β2), 
correlation coefficient (ρ), etc., are known as parameters. In other words, the terms which are used for 
studying the measures of the population are known as parameters while others that are used for sample 
are known as statistics. Therefore, a statistic is a summary description of a characteristic or measure of 
the sample. The sample statistic is used as an estimate of the population parameter. Also, in order to 
avoid verbal confusion with the statistical constants of the population, viz., mean (µ), variance ( 2 ), 
etc., which are usually referred to as parameters, statistical measures computed from the sample 
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observations alone, e.g., mean ( x ), variance(s2), etc., have been termed by Professor R.A. Fisher as 
statistics.  

Let us consider a finite population of N units and let Y1 ,Y2 ,Y3 ,...,YN be the observations on the N units 
in the population. 

  Mean (  
N

1 2 N i
i=1

1 1μ)= Y +Y +...+Y = Y
N N  

     

 

2 2 22
1 2 N

N
2

i
i=1

1σ = Y -μ + Y -μ +...+ Y -μ
N
1= Y -μ
N

 
 


 

Suppose, we draw a sample of size n from this population. Let X1, X2, X3,---,Xn be the observations on 
the sample units. Then we can compute sample mean  X  and sample variance (s2) as given below: 

Mean  1 2 i
i=1

1 1(X)= +X +...+X =
n

nX X
n n   

     

 

2 2 22
1 2

2

i
i=1

1= -X + -X +...+ X -X

1= -X

n

n

s X X
n

X
n

 
  


 

In practice, parameter values are not known and the estimates based on the sample values are generally 
used. Thus statistics which may be regarded as an estimate of the parameter, obtained from the sample, 
is a function of the sample values only. It may be pointed out that a statistic, as it is based on sample 
values and as there are multiple choices of the samples that can be drawn from a population, varies from 
sample to sample. 

Remark: Now onwards, µ and 2  will refer to the population mean and variance, respectively while the 
sample mean and variance will be denoted by X and s2respectively. 

4.3 Sampling Distribution of a Statistic 

A Sampling Distribution is a probability distribution of a statistic obtained through a large number of 
samples drawn from a specific population. For example: Suppose a simple random sample of five 
hospitals is to be drawn from a population of 20 hospitals. The possibilities could be, (20, 19, 18, 17, 16) 
or (1, 2,4,7,8) or any of the 15,504 (using 20C₅ combinations) different samples of size 5 can be drawn. 
If we draw a sample of size n from a given finite population of size N, then the total number of possible 
samples is: 

NCn
 =

!
!( )!

N
n N n

 = k(say) 
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For each of these samples we can compute some statistic t = t (X1, X2,..., Xn) e.g. mean X , the variance 
s2 , etc., as given below.The set of values of the statistic so obtained one for each sample constitutes 
what is called the sampling distribution of the statistic. For example, the values t1, t2,..., tk determine the 
sampling distribution of the statistic t.In other words, the statistic t can be regarded as a random variable 
which can take values t1, t2,..., tk and we can compute various statistical constants like mean, variance, 
skewness, and kurtosis etc., 

Table  

Sample number Statistic 

t X  2s  

1 

2 

3 

. 

. 

. 

k 

t1 

t2 

t3 

. 

. 

. 

tk 

1X  

2X  

3X  

. 

. 

. 

kX  

2
1

2
2
2

3

2

.

.

.

k

s
s
s

s

 

 for its distribution e.g. the mean and variance of the sampling distribution of the statistic are given by 

1 1

1 1;
k k

ii
i i

t t X X
k k 

      

 
2

2

1 1

1 1( ) ( ) ; ( )
k k

ii
i i

V t t t V X X X
k k 

      

Remark: In general, the mean of the sampling distribution will be approximately equivalent to the 
population mean i.e. E(x̄) = μ 

4.4 Standard Error 

The standard deviation of the sampling distribution of a statistic is known as its standard error. It is very 
similar to the standard deviation. Both are measures of spread. The higher the number, the more spread 
out your data is. To put it simply, the two terms are essentially equal, but there is one important 
difference. While the standard error uses statistic (sample data), standard deviation use parameters 
(population data). The standard error tells you how far your sample statistic (like the sample mean) 
deviates from the actual population parameter. The larger your sample size, the smaller the SE. In other 
words, if we increase the sample size, our sample mean will become closer to the population mean. The 
standard error of a statistic t is given by: 
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 
2k

i
i=1

1S.E.(t)= V(t)= t -t
k  

The standard errors of some of the well known statistics, for large samples, are given below where n is 
the sample size, σ2 the population variance, P the population proportion and Q= 1-P, n1 and n2 represent 
sizes of two independent random samples. 

Table  

Sr. No. Statistic Standard Error 

1.  Sample mean X  

n


 

2.  Sample proportion p PQ
n

 

3.    Sample standard deviation 2

2n
  

4.        Sample variance (s2) 
2 2

n
  

5.        Sample correlation coefficient( r)  21 p

n


 

6.        Difference between two sample 
means  1 2X X  

2 2
1 2

1 2n n
 

  

7.        Difference between two sample Standard 
deviation  (s1-s2) 

  

2 2
1 2

1 22 2n n
 

  

8.        Difference between two sample proportion 
(p1-p2) 

1 1 2 2

1 2

PQ P Q
n n

  

4.4.1 Utility of Standard Error 

1. S.E. plays a very important role in large sample theory and forms the basis of the testing of 
hypothesis. Thus, if the discrepancy between the observed and expected (hypothetical) value of a 
statistic is greater than or equal to Zα times S.E., the hypothesis is rejected at α level of 
significance otherwise the deviation is not regarded as significant and is considered as due to 
fluctuations of sampling or chance causes. 
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2. The magnitude of S.E. gives an index of the precision of the estimate of parameter. The 
reciprocal of the S.E. is taken as the measure of reliability or precision of the sample e.g. S.E. of 

sample mean and sample proportion are σ PQand
nn

respectively, which vary inversely as 

the square root of the sample size. Thus in order to double the precision which amounts to 
reducing the S.E. to one half, the sample size has to be increased four times. 

3. S.E. enables us to determine the probable limits/confidence limits within which the population 
parameter may be expected to lie. 

4.5 Statistical Hypothesis 

A statistical hypothesis is an assumption or statement about a population parameter. This assumption 
may or may not be true, which we want to test based on evidence from a random sample. Hypothesis 
testing refers to the formal procedures used by statisticians to accept or reject statistical hypotheses. In 
other words, it is a tentative conclusion logically drawn concerning any parameter of the population. For 
example, the average fat percentage of milk of Red Sindhi Cow is 5%, the average quantity of milk 
filled in the pouches by an automatic machine is 500ml. 

Before starting any investigation, we need to set some assumptions and presumptions which 
subsequently in the study must be proved or disproved. The hypothesis is based on observation which is 
discussed below: 

4.5.1 Null Hypothesis 

The technique of randomization used for the selection of sample units makes the test of significance 
valid for us. For applying the test of significance, we first set up a hypothesis-a definite statement about 
the population parameter. Such a hypothesis, which is usually a hypothesis of no difference, is called 
null hypothesis. According to Prof. R. A. Fisher, a hypothesis which is tested for possible rejection 
under the assumption that it is true is usually called Null Hypothesis and is denoted by H0. The common 
way of stating a hypothesis is that there is no difference between the two values, namely the population 
mean and the sample mean. The term no difference means that the difference, if any, is merely due to 
sampling fluctuations. Thus, if the statistical test shows that the difference is significant, the hypothesis 
is rejected. To test whether there is any difference between the two populations we shall assume that 
there is no difference. Similarly, to test whether there is a relationship between two variates, we assume 
there is no relationship. So a hypothesis is an assumption concerning the parameter of the population. 
The reason is that a hypothesis can be rejected but cannot be proved. Rejection of no difference will 
mean a difference, while the rejection of no relationship will imply a relationship.  

Example: 

1. If we want to test that the average milk production of Karan Swiss cows in lactation is 3000 litres 
thenthe null hypothesis may be expressed symbolically as Ho: μ = 3000 litres. 

2. In case of a single statistic, H0 will be that the sample statistic does not differ significantly from the 
hypothetical parameter value and in the case of two statistics, H0 will be that the sample statistics do 
not differ significantly. 
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3. Let us consider the ‘light bulbs’ problem. Let us suppose that the bulbs manufactured under some 
standard manufacturing process have an average life of µ hours and it is proposed to test a new 
procedure for manufacturing light bulbs, those manufactured by standard process and those 
manufactured by the new process.  

In this problem, the following three hypotheses may be set up:  

(1) New process is better than the standard process.  

(2) New process is inferior to the standard process. 

(3) There is no difference between the two processes. 

The first two statements appear to be biased since they reflect a preferential attitude to one or the other 
of the two processes. Hence the best course is to adopt the hypothesis of no difference, as stated in (3). 
This suggests that the statistician should take up the neutral or null attitude regarding the outcome of the 
test. 

4.5.2 Alternative Hypothesis 

Any hypothesis which is complementary to the null hypothesis is called an Alternative hypothesis. In 
other words, we can say that the sample result is different, i.e. greater or lower than the hypothetical 
value of population. It is usually denoted by H1. For example: If we want to test the null hypothesis that 
the population has a specified mean µ0, (say), H0= µ0 then the alternative hypothesis could be: 

(1) H1: µ≠ µ0        (i.e., µ> µ0 or  µ < µ0 ) 

(2) H1: µ > µ0  ,        (3) H1: µ< µ0 

 The alternative hypothesis in (1) is known as a two-tailed alternative and the alternatives in (2) and (3) 
are known as right tailed and left tailed alternatives respectively.    

Remark: The setting of alternative hypothesis is very important since it enables us to decide whether we 
have to use a single-tailed test or two-tailed test. For example: In the example of light bulbs, alternative 
hypothesis could be, 

(1) H1: µ1> µ0   or   µ1< µ0  or  µ1 ≠ µ0 

Example: We want to test if college students take less than five years to graduate from college, on the 
average.  

0 1: 5 , : 5H H    

4.5.3 Simple Hypothesis 

If the statistical hypothesis completely specifies the population or distribution, it is called a simple 
hypothesis. In this hypothesis, all parameters associated with the distribution are stated or a specified with 
a particular value. For instance, if the height of the students in a school is distributed normally with 2 6 

and the hypothesis that the mean stands equivalent to 70 implying 0 : 70H   . This stands to be the 
simple hypothesis as variance and mean both completely specify the normal distribution. In general, a 
simple hypothesis reflects that 

0   where 
0 is the specified value of  ( 1 2  may represent , ,     ). 
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4.5.4 Composite Hypothesis 

A hypothesis which is not simple, i.e., in which not all of the parameters are specified is called a 
composite hypothesis. For instance, if we hypothesize that 2

0 : 62  and 4H    or 0 : 62H  
2and 4  , the hypothesis becomes a composite hypothesis because we cannot know the exact 

distribution of the population in either case. Obviously, the parameters μ>62 and 2 4  have more than 
one value and no specified values are being assigned. The general form of a composite hypothesis is

0 0   or       ; that is, the parameter  does not exceed or does not fall short of a specified value 0 . 
The concept of simple and composite hypotheses applies to both the hypothesis.  

4.6 Two Types of Errors  

The main objective in sampling theory is to draw valid inferences about the population parameters on 
the basis of the sample results. The decision to accept or reject the null hypothesis H0 is made on the 
basis of the information supplied by the observed sample observations. When we perform a hypothesis 
test, there are four outcomes depending on the actual truth (or falseness) of the null hypothesis H0 and 
the decision to reject or not. These four possible outcomes are 

1. The decision is to not reject 0H  when, in fact, 0H is true (correct decision). 

2. The decision is to reject 0H  when, in fact, 0H  is true (incorrect decision known as a Type I error). 

3. The decision is to not reject 0H  when, in fact, 0H  is false (incorrect decision known as a Type II 
error). 

4. The decision is to reject 0H  when, in fact, 0H  is false (correct decision whose probability is 
called the Power of the Test). 

Each error occurs with some probability. As such we are liable to commit the following two types of 
errors. 

Type I Error: Reject H0 when it is true. 

Type II Error: Accept H0 when it is wrong, i.e., accept H0 when H1 is true. If we write 

P(Type I Error) =Probability of rejecting H0 when H0 is true =  and  

P(Type II Error)= Probability of accepting H0 when H0 is false =   

Then  and  are called the sizes of type I error and type II error, respectively. In practice, type I error 
amounts to rejecting a lot when it is good and type II error may be regarded as accepting the lot when it 
is bad. Thus P{Reject a lot when it is good} = and P{Accept a lot when it is bad}=  , where and 

are referred to as producer’s risk and consumer’s risk respectively. 

Example: Suppose the null hypothesis, H0, is: The victim of an automobile accident is alive when he 
arrives at the emergency room of a hospital. 
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Type I error: The emergency crew concludes that the victim is dead when, in fact, the victim is alive.  

Type II error: The emergency crew concludes that the victim is alive when, in fact, the victim is dead. 

 = probability that the emergency crew thinks the victim is dead when, in fact, he is really alive 

      = P(Type I error) 

 = probability that the emergency crew thinks the victim is alive when, in fact, he is dead  

       = P(Type II error) 

The error with the greater consequence is the Type I error. (If the emergency crew thinks the victim is 
dead, they will not treat him). 

4.7 Critical Region and Level of Significance 

A region corresponding to a statistic t in the sample space S which amount to rejection of H0 is termed 
as critical region of rejection. If ω is the critical region and if t= t(x1 , x2, ,x3,... xn) sample of size n then    

   0 1| , |P t H P t H        

where  , the complementary set of ω, is called the accepting region. 

We have ω   = S and ω ∩   =   

The probability α that a random value of the statistic t belong to the critical region is known as the level 
of significance. In other words, level of significance is the size of the type I error (or the maximum 
producer’s risk). The level of significance usually employed in testing are 5% and 1%. The level of 
significance is always fixed in advanced before collecting the sample information. 

Level of significance: α, the probability of type I error, is known as the level of significance of the test. 
It is also called the size of the critical region.  

Critical region: Let x1 , x2 ,... , xn be the sample observations denoted by A. All the value of A will be 
aggregate of a sample and they constitute a space called the sample space, which is denoted by S. Since 
the sample values x1 , x2 , ... xn can be taken as a point in n-dimensional space, we specify some region of 
the n-dimensional space and see whether this point 
lies within this region or outside this region. We 
divide the whole sample space S into two disjoint 
parts W and S-W or Ẇ or W’. The null hypothesis 
H0 is rejected if the observed sample point falls in W 
and if falls in W’ we reject H1 and accept H0. The 

region of rejection of H0 when 0H  is true is that 

region of the outcome set where 0H  is rejected if the 
sample point falls in the region W and is called 
critical region. Evidently, the size of the critical 
region is α, the probability of committing type I error (discuss below). 
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Suppose, if the test is based on a sample of size 2 then the outcome set or sample space is the first 
quadrant in two-dimensional space and a test criterion will enable us to separate our outcome set into 

complementary subsets,W and W’.If the sample point falls in the subset W, 0H  is rejected, otherwise 0H  

is accepted. This is shown in the diagram. 

4.8 One-Tailed and Two-Tailed Tests 

In any hypothetical test, the critical region is represented by a portion of the area under the probability 
curve of the sampling distribution of the test statistic. An alternatives hypothesis may be one-sided or 
two-sided (right-tailed or left-tailed). A one-sided hypothesis claims that a parameter is either larger or 
smaller than the value given by the null hypothesis. A two-sided hypothesis claims that a parameter is 
simply not equal to the value given by the null hypothesis - the direction does not matter. 

For example: A test for testing the mean of a population H0: µ = µ0 against the alternative hypothesis: 
H1: µ> µ0 (right-tailed) or H 1: µ< µ0 (left-tailed), is a single-tailed test.  

In the right-tailed test (H1: µ> µ0), the critical region lies entirely in the right tail of the sampling 
distribution of x , while for the left-tailed test (H 1: µ< µ0), the critical region is entirely in the left tail of 
the distribution. A test of statistical hypothesis where the alternative hypothesis is two-tailed such as: H0: 
µ=µ0, against the alternative hypothesis H1: 0  ( 0  or 0  ), is known as two-tailed test and in 
such a case the critical region is given by the portion of the area lying in both tails of the probability 
curve of the test statistic. In particular problem, whether one-tail or two-tailed test is to be applied 
depends entirely on the nature of the alternative hypothesis. If the alternative hypothesis is two-tailed, 
we apply two-tailed and if alternative hypothesis is one-tailed, we apply one-tailed test. 

4.9 Critical Values or Significant Values 

 The value of test statistic which separates the critical (or rejection) region and the acceptance region is 
called the critical value or significant value. It depends upon: 

(1) The level of significance used, and  

(2) The alternative hypothesis, whether it is two tailed or single tailed. 

As has been pointed out earlier, for large samples, the standardized variable corresponding to the 
statistic t, viz.,        

 Z = 
( ) (0,1)

. ( )
t E t N
S E t
  ,   .... (*) 

Asymptotically as n  . The value of Z given by (*) under the null hypothesis is known as test 
statistic. The critical value of the test statistic at level of significance α for a two- tailed test is given by 
Zα is determined by the equation: 

    P(| Z |  > zα) = α         .....(1) 

i.e., zα  is the value so that the total area of critical region of both tails is α . Since normal probability 
curve is a symmetrical curve, from (1), we get  
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P(Z > zα ) + P(Z<-zα)=α P(Z > zα ) + P(Z > zα ) = α [By Symmetry]  

2 P(Z > zα )= α,P(Z > zα )= α /2 

In other words, the area of each tail is α /2. Thus zα is the value such that area to the right of zα is α /2 
and to the left of (-zα) is α /2, as shown in the diagram: 

 
In case of single-tail alternative, the critical value Zα is determined so that area to the right of it (for 
right-tailed test) is α and for left-tailed test the total area to the left of (-Zα) is α (see the Diagrams), i.e., 

For Right-tailed test: P(Z > zα ) = α ....(2) 

s 

For Left-tailed test: P(Z <-zα ) = α .....(3) 

 


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Thus the significance or critical value of Z for a single-tailed test (left or right) at level of significance 
‘α’ is same as the critical value of Z at for a two-tailed test at level of significance ‘2α’. So, the critical 
values of Z at commonly used levels of significance for both two-tailed and single-tailed tests are given 
below. These values have been obtained from equation (1), (2) and (3) on using the Normal Probability 
Table is: 

Normal Probability Table  

Note: - It is to be noted if n is very small i.e. n is less than 30, the above sampling distribution of the test 
statistic will not be normal. In this case, we have to use other test e.g. t-test. 

4.10 Tests of Significance 

In the previous section, we encountered a problem to decide whether our sample observations have 
come from a postulated population or not. Based on sample observations, a test is performed to decide 
whether the postulated hypothesis is accepted or rejected and this involves a certain amount of risk. The 
amount of risk is termed as a level of significance. When the hypothesis is rejected, we consider it as a 
significant result and when a reverse situation is encountered, we consider it as a non-significant result. 
We have seen that for large values of n, the number of trials, almost all the distributions e.g., Binomial, 
Poisson etc. are very closely approximated by Normal distribution and in this case we apply Normal 
Deviate test (Z-test). In cases where the population variance(s) is/are known, we use Z-test. The 
distribution of Z is always normal with mean zero and variance one. In this subsection, we shall be 
studying the problem relating to test of significance for large samples only. In statistics, a sample is said 
to be large if its size exceeds 30. 

To perform testing of any statistical hypothesis such as test of significance of mean, difference of mean, 
single proportion and large sample, we need to set some pre-assumptions. Thus, we follow a procedure 
which is given below: 

Steps of Test of Significance 

1. Null hypothesis: Set up the null hypothesis 0H  

2. Alternative Hypothesis: Set up the alternative hypothesis 1H which enables us to decide whether we 
have to use single-tailed or two-tailed test. 

3. Level of Significance: Choose the appropriate level of significance. 

Critical value 

(Zα) 

Level of significance(α) 

1%                                  5%                                      10% 

Two-tailed test Z =2.58 Z =1.96 Z =1.645 

Right-tailed test Zα  =2.33      Zα =1.645                           Zα=1.28                                     

Left-tailed test Zα  =-2.33                   Zα =-1.645                       Zα=-1.28             
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4. Test Statistic: Compute the test statistic 

Z= x

n



 , under 0H  

5. Conclusion: We compare the computed value of Z with the significant value z  at level of 
significance, ' ' . 

If z z , i.e. if value of Z is less than the significant value z , we say it is not significant. If z z , 

i.e., if the computed value of test statistic is greater than the critical value, then we say result of sample 
data is significant and the null hypothesis is rejected at the level of significance .  

4.10.1  Test of Significance for Large Samples 

As we know for large samples, most of the distribution approximated by normal distribution and also 
sample variance approaches population variance and is deemed to be almost equal to population 
variance. Thus in this case, we apply the normal test which is based upon the following fundamental 
property of normal probability curve.  

If 2 ( )( , ),     then (0,1)
( )

X X E XX N Z N
V X

 

 

    

It should be noted that for all probability, we should expect that standard normal variate lie between -3 
to 3. Also the significant values of Z at 5% and 1% levels of significance for two-tailed test are 1.96 and 
2.58, respectively. 

From normal probability tables, we have 

P[-3≤Z≤3]=P[|Z| ≤ 3] = 0.9973 ⇒ P[|Z| > 3] = 1-P[|Z| ≤ 3] = 0.0027. Thus, the value of Z=3 is regarded 
as critical or significant value at all levels of significance. Thus if |Z| > 3, H0 is always rejected. If |Z| ≤3, 
we test its significance at certain level of significance usually at 5% and sometimes at 1% level of 
significance. Also P[|Z| >1.96]=0.05 and P[|Z| >2.58]=0.01.Thus, significant values of Z at 5% and 1% 
level of significance are 1.96 and 2.58 respectively. If |Z| >1.96, H0 is rejected at 5% level of 
significance if |Z| <1.96, H0 may be retained at 5% level of significance. Similarly |Z|>2.58, H0 is 
rejected at 1% level of significance and if |Z| <2.58, H0 is retained at 1% level of significance. In the 
following sections we shall discuss the large sample (normal) tests for attributes and variables. 

4.10.2 Test of Significance for Single Proportion 

If the observations on various items or objects are categorized into two classes 1c and 2c (binomial 
population), viz. defective or not defective item, we often want to test the hypothesis, whether the 
proportion of items in a particular class, viz., defective items is P0 or not. For example, the management 
of a dairy plant is interested in knowing that whether the population of leaked pouches filled by 
automatic milk filling machine is one percent. Thus for binomial population, the hypothesis wewant to 
test is whether the sample proportion is representative of the Population proportion P = P0 against H1: 
P≠P0 or H1: P>P0 or H1: P<P0 can be tested by Z-test where P is the actual proportion of items in the 
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population belonging to class 1c . Proportions are mostly based on large samples and hence Z-test is 
applied. 

If X is the number of successes in n independent trials with constant probability P of success for each 
trial then E (X) = P and V (X) = nPQ, where Q = 1−P. It is known that for large n, the Binomial 
distribution tends to Normal distribution. Hence, for large n, X~N (nP, nPQ). Therefore, Z statistic for 
single proportion is given by 

 
 

 
 

X E X X E X
Z

SE X V X

 
   

  (0,1)
X nP

Z N
nPQ


   

and we can apply a normal test. 

If in a sample of size n, X be the number of persons possessing the given attributes then observed 

proportion of successes X p
n
    

2 2

1 1( ) ( )

1 1( ) ( )

. .( )

XE p E E X nP P
n n n
X PQV p V V X nPQ
n n n n

PQS E p
n

     
 
     
 



 

Since X and consequently X/n is asymptotically normal for large n, the normal test for the proportion of 
success becomes. 

( ) (0,1)
( )

p E p p PZ N
SE p PQ

n

 
    

Since the probable limits for a normal variate X are ( ) 3 ( )E X V X , the probable limits for the 
proportion of successes are: 

( ) 3 . .( ) . ., 2 /E p S E p i e p PQ n   

If P is not known then taking p as an estimate of P, the probable limits for the proportion in the 

population are: 3 /p pq n . However, the limits for P at level of significance  are given by: 

/p z pq n , where z is the significant value of Z at level of significance . 
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Example 1: A random sample of 500 pineapples was taken from a large consignment and 65 were 
found to be bad. Show that the S.E. of the proportion of bad ones in a sample of this size is 0.015 and 
deduce that the percentage of bad pineapples in the consignment almost certainly lies between 8.5 and 
17.5. 

Solution: Here we are given: n=500 

                 X =number of bad pineapples in the sample =65 

                  p = proportion of bad pineapples in the sample =65/500 = 0.13 q = 1-p = 0.87 

since P, the proportion of bad pineapples in the consignment is not known, we may take: 
 0.13, 0.87P p Q q     

S.E. of proportion =   / 0.13 0.87 / 500 0.015PQ n     

Thus, the limits for the proportion of bad pineapples in the consignment are: 
  3 / 0.130 3 0.015 0.130 0.045 (0.085, 0.175)P PQ n        

Hence the percentage of bad pineapples in the consignment lies almost certainly between 8.5 and 17.5. 

Example 2: In a large consignment of baby food packets, a random sample of 100 packets revealed that 
5 packets were leaking. Test whether the sample comes from the population (large consignment) 
containing 3 percent leaked packets. 

Solution: In this example n=100, X=5, P=0.03, / 5 / 100 0.05p X n   .  

H0: P = 0.03 .i.e., the proportion of the leaked pouches in the population is 3 per cent 

H1: P ≠ 0.03. 

Here, we shall use standard normal deviate (Z) test for single proportion as under 

0.05 0.03 0.02 1.17
0.01706(0.03)(0.97)

100

p PZ
PQ
n

 
     

Since calculated value of Z statistic is less than 1.96 therefore H0 is not rejected at 5% level of 
significance which implies that the sample is representative of the population (large consignment) of 
packets containing 3% leaked packets. 

Example 3:  A random sample of 500 apples was taken from a large consignment and 60 were found to 
be bad. Obtained the 98% confidence limits for the percentage of bad apples in the consignment. 

Solution: We have 

                   p = proportion of bad apples in the sample =60/500 =0.12 
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Since significant value of Z at 98% confidence coefficient (level of significance 2%) is 2.33, (from 
normal tables), 98% confidence limits for population proportion are: 

2.33 / 0.12 2.33 0.12 0.88/500 0.12 2.33 0.0002112 0.12 2.33 0.01453p pq n         
=(0.08615,0.15385) 

Hence 98% confidence limits for percentage of bad apples in the consignment are (8.61,15.38). 

Example 4: A normal population has a mean of 0.1 and standard deviation of 2.1. Find the probability 
that mean of a sample of size 900 will be negative. 

Solution: Here we are given that X~N(μ,σ2), where μ = 0.1 and σ = 2.1 and n =900. Since X~N(μ,σ2), 

the sample mean x  ~ N(μ,
2

n


). The standard normal variate corresponding to x  is given by: 

           Z= x

n



     = 

0.1 0.1
2.1 0.0730

x x 
 x=0.1+0.07Z, where Z~N(0,1) 

The required probability p, that the sample mean is negative is given by: 

     p = P( x<0) = P(0.1+0.07Z<0)=P(Z< 0.10
0.07
 )     

=P(Z<-1.43)=P(Z≥1.43)=0.5-P(0<Z<1.43)=0.5-0.4236=0.0764.(From normal probability table) 

Example 5: The guaranteed average life of a certain type of electric light bulbs is 1000 hrs with a 
standard deviation of 125 hrs. It is decided to sample the output so as to ensure that 90% of the bulbs do 
not fall short to the guaranteed average more than 2.5%. What must be the minimum size of the sample? 

Solution: Here μ=1000 hrs, σ = 125 hrs. 

Since we do want the sample mean to be less than the guaranteed average mean by more than 2.5%, we 
should have ( x>1000-2.5% of 1000  x>1000-25=975 

 Let n be the given sample size.Then  

                       Z= x

n



     ~  N(0,1)  since sample is large . 

We want      Z= x

n



 > 975 1000

5
n

n



   

According to the given condition: 

 P(Z>- 5
n ) = 0.90 P(0<Z< 5

n ) = 0.40 
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5
n =1.28                                               (From normal probability table) 

∴ n =25 × (1.28)2=41 (approx)     

4.10.3 Test of Significance for Difference of Proportions 

Suppose we want to compare two distinct populations with respect to the prevalence of a certain of 
attribute, say A, among their members. Let X1, X2 be the member of persons possessing the given 
attribute A in random samples of sizes n1 and n2 from the two populations, respectively. Then sample 
proportions are given by: p1=X1/n1 and p2= X2/n2. If P1 and P2 population proportions, thenE(p1)=P1, 
E(p2)=P2 and V(p1)=(P1Q1)/n1and V(p2)=(P2Q2)/n2 

Since for large samples, p1 and p2 are independently and asymptotically normally distributed, (p1-p2) is 
also normally distributed. Then the standard variable corresponding to the difference (p1-p2) is given by: 

Z = 
   

 
1- 2 1- 2

1- 2

(0,1)
E

N
V

p p p p
p p




  

Under the null hypothesis, H0:P1=P2, i.e., there is no significant difference between the sample 
proportions, we have 

E(p1-p2) = E(p1)- E(p2)= p1-p2=0 

Also V(p1-p2)=V(p1)+V(p2),                         (Under H0) 

The covariance term Cov(p1,p2) vanishes, since sample proportions are independent. 

1 1 2 2
1 2

1 2 1 2

1 1( ) ( )PQ PQV p p PQ
n n n n

      ,   [ under H0:P1=P2=P (say), and Q1=Q2=Q] 

Hence, under H0:P1=P2, the test statistic for the difference of proportions becomes: 

Z = 1 2

1 2

(0,1)
1 1( )

p p N
PQ

n n




  

 In general, we do not have any information as to the proportion of A’s in the populations from which 
the samples have been taken. Under H0:P1=P2=P(say), an unbiased estimate of the population P, based 
on both the samples is given by: 

 1 1 2 2 1 2

1 2 1 2

n p n p X XP
n n n n
 

 
 

 

The estimate is unbiased, since 


1 1 2 2 1 1 2 2

1 2 1 2

1 1( ) [ ] [ ( ) ( )E P E n p n p n E p n E p
n n n n

   
 
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= 
1 2

1
n n

(n1P1+n2P2) = P 

So this is the required test statistic. 

Example 6: Random samples of 400 men and 600 women were asked whether they would like to have a 
flyover near their residence. 200 men and 325 women were in favour of the proposal. Test the 
hypothesis that proportions of men and women in favour of the proposal, are same against that they are 
not, at 5% level.  

Solution: Null Hypothesis H0:P1=P2=P(say), i.e., there is no significant difference between the opinions 
of men and women as far as proposal of flyover is concerned. 

Alternative hypothesis, H1:P1 ≠ P2 (two-tailed) 

We are given: n1=400, X1=Number of men favouring the proposal =200 

n2=600, X2=Number of women favouring the proposal = 325 

∴p1=proportion of men favouring the proposal in the sample =X1 /n1 =200/400 = 0.5 

p2 = proportion of women favouring the proposal in the sample = X2/n2 = 325/600 = 0.541 

Test Statistic: Since samples are large, the test statistic under the null hypothesis, H0 is: 

Z=
 

1 2

1 2

(0,1)
1 1( )

p p N
PQ

n n




 , where 

 1 1 2 2 1 2

1 2 1 2

n p n p X XP
n n n n
 

 
 

 = 200 325
400 600




=0.525        1Q P   = 1-0.525 =0.475 

∴   Z=
0.500 0.541 0.041 0.041

0.03231 1 0.0010390.525 0.475 ( )
400 600

  
 

  
 =-1.269 

Conclusion: Since Z =1.269 which is less than 1.96, it is not significant at 5% level of significance. 
Hence H0 may be accepted at 5% level of significance and we may conclude that men and women do 
not differ significantly as regards proposal of flyover is concerned. 

Example 7: Before an increase in excise duty on tea, 800 persons out of a sample of 1000 persons were 
found to be tea drinkers. After an increase in duty, 800 people were tea drinkers in a sample of 1200 
people. Using standard error of proportion, state whether there is a significant decrease in the 
consumption of tea after the increase in excise duty? 

Solution: In usual notations, we have n1 = 1000; n2 = 1200. 

p1 = sample proportion of tea drinkers before increase in excise duty=800/1000 = 0.80 

p2 = sample proportion of tea drinkers after increase in excise duty = 800/1200 = 0.67 
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Null hypothesis, H0:P1=P2, i.e., there is no significant difference in the consumption of tea before and 
after the increase in excise duty. 

Alternative hypothesis, H1:P1>P2 (right-tailed alternative). 

Test statistic. Under the null hypothesis, the test statistic is: 

Z=
 

1 2

1 2

(0,1)
1 1( )

p p N
PQ

n n




 ,     (since samples are large) 

Where      1 1 2 2

1 2

n p n pP
n n





= 800 800 16
1000 1200 22





    and  1Q P  =6/22 

0.80 0.67 0.13
0.01916 6 1 1

22 22 1000 1200

Z 
  

       

 

0.80 0.67 0.13
0.01916 6 1 1

22 22 1000 1200

Z 
  

        

 =6.842 

Conclusion: Since Z is much greater than 1.645 as well as 2.33 (since test is one tailed), it is highly 
significant at both 5% and 1% levels of significance. Hence, we reject the null hypothesis H0 and 
conclude that there is a significant decrease in the consumption of tea after increase in the excise duty.                       

4.10.4 Test for Significance of Single Mean 

We have seen that if Xi (i=1, 2,..., n) is a random sample of size n from a normal population with mean
 and variance σ2, then the sample mean X is distributed normally with mean μ and variance σ2/n i.e., 

2σX N μ,
n

 
 
 

 .Thus for large samples normal variate corresponding to X is 

/
XZ

n





    

In test of significance for a single mean we deal the following situations 

1.  To test if the mean of the population has a specified value ( 0 ) and null hypothesis in this case 

will be H0:   = 0  i.e., the population has a specified mean value. 

2. To test whether the sample mean differs significantly from the hypothetical value of population 
mean with null hypothesis as there is no difference between sample mean X  and population 
mean (  ). 
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3. To test if the given random sample has been drawn from a population with specified mean 0 and 
variance 2 with null hypothesis the sample has been drawn from a normal population with 
specified mean μ0 and variance 2 . 

 In all the above three situations, the test statistic is given by 

(0,1)
/

XZ N
n





     

If |Z| <1.96, H0 is not rejected at 5% level of significance which implies that there is no significant 
difference between sample mean and population mean and whatever difference is there, it exists due to 
fluctuation of sampling. 

|Z| >1.96, H0 is rejected at 5% level of significance which implies that there is a significant difference 
between sample mean and population mean. The above situations are illustrated by following examples: 

Example 8: A random sample of 100 students gave a mean weight of 64 kg with a standard deviation of 
16 kg. Test the hypothesis that the mean weight in the population is 60 kg. 

Solution: In this example, n=100,  =60 kg., X =64 kg., =16 

H0:  =60 kg. , i.e. the mean weight in the population is 60 kg. 

We shall use standard normal deviate (z) test for single mean as under: 

  

64 60 2.5
/ 16 / 100

XZ
n



 

            

Since calculated value of Z statistic is more than 1.96, it is significant at 5% level of significance. 
Therefore, H0 is rejected at all levels of significance which implies that mean weight of population is not 
60 kg.   

Example 9: A sample of 50 cows in a herd has average lactation yield 1290 litres. Test whether the 
sample has been drawn from the population having herd average lactation yield of 1350 litres with a 
standard deviation of 65 litres. 

Solution: In this example, n=50,   =1350 litres, X =1290,   =65 

H0:   =1350 litres i.e., the mean lactation milk yield of the cows in the population is 1350 

H1:   ≠1350 litres 

We shall use standard normal deviate (Z) test for single mean as under: 

1290 1350
/ 65 / 50

XZ
n



 

   =-6.53 6.53Z       
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Since calculated value of Z statistic is more than 3, it is significant at all levels of significance. 
Therefore, H0 is rejected at all levels of significance which implies that the sample has not been drawn 
from the population having mean lactation milk yield as 1350 litres or there is a significant difference 
between sample mean and population mean. 

4.10.5 Test of significance for Difference of Means 

Let 1X be the mean of a sample of size 1n drawn from a population with mean μ1 and variance σ1
2 and 

let 2X be the mean of an independent sample of size 2n drawn from another population with mean 

2  and variance σ2
2. Since sample sizes are large. 

2 2
1 2

1 21 2
1 2

, and ,X N X N
n n
  

   
   
   

     

Also  1 2X X , being the difference in means of two independent normal variates is also a normal 

variate. The standard normal variate corresponding to 1 2X X  is given by 

  
   

 
 

1 2 1 2

1 2

0,1
X X E X X

Z N
V X X

  



     

Under the null hypothesis 0 1 2H :μ =μ i.e., the two population means are equal, we get  

      1 2 1 2 1 2 0E X X E X E X             

     
2 2

1 2
1 2 1 2

1 2

V X X V X V X
n n
 

         

The covariance terms vanish, since the sample means 1 2 and  X X   are independent. 

Thus under 0 1 2H :μ =μ , the Z statistic is given by      

 21
2 2

1 2

1 2

0,1X XZ N

n n
 






    

Here σ1
2 and  σ2

2 are assumed to be known. If they are unknown then their estimates provided by 

corresponding sample variances 2
1s  and 2

2s respectively are used, i.e.,  2 2
1 1ˆ s      and 2 2

2 2ˆ s  , thus, in 
this case the test statistic becomes 

 21
2 2

1 2

1 2

0,1X XZ N
s s
n n






    
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Remarks: If
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Example 11:The means of two single large samples of 1000 and 2000 members are 67.5 inches and 
68.0 inches respectively. Can the samples be regarded as drawn from the same population of standard 
deviation 2.5 inches? (test at 5% level of significance). 

Solution:In usual notations, we are given: n1=1000, n2 =2000, 1x =67.5 inches, 2x =68.0 inches. 

Null hypothesis, H0: μ1=μ2 and σ =2.5 inches, i.e., the samples have been drawn from the same 
population of standard deviation 2.5 inches. 

Alternative hypothesis H1: μ1≠μ2(two-tailed) 

Test statistic: Under H0, the test statistic is: 

 Z= 
2

1

1
2

2

2( ) (0,1)x

n n

x N
 




                   (since samples are large) 

Now, Z= 1
1

10

6

00

7.5 68 5.
12

0
.

200
5


 

 
 

Conclusion:Since 3Z  , the value is highly significant and we reject the null hypothesis and conclude 

that samples are certainly not form the same population with standard deviation 2.5. 

Example 12: The average hourly wage of a sample of 150 workers in a plant ‘A’ was Rs. 2.56 with 
standard deviation of Rs. 1.08. The average hourly wage of a sample of 200 workers in plant ‘B’ was 
Rs. 2.87 with a standard deviation of Rs. 1.28. Can an applicant safely assume that the hourly wages 
paid by plant ‘B’ are higher than those paid by plant ‘A’? 

Solution: Let X1and X2 denote the hourly wages (in Rs.) of workers in plant ‘A’ and plant ‘B’ 
respectively. Then in usual notations we are given: 

 n1=150, n2=2000, 1x =2.56, 2x =2.87  

s1=1.08 = 1 , s2 =1.28 = 2  (since sample are large) 

Null hypothesis, H0: μ1=μ2 ,i.e., there is no significance difference between mean level of wages of 
workers in plant A and plant B  

Alternative hypothesis, H1: μ2>μ1 (left –tailed test) 

Test statistic: under H0, the test statistic is : 

 Z= 2
2 2

1 2

1

1 2 1
2 2

1 2

1 22

( ) (0,1)x x x x N
s

n n
s
n n

 


 


   
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Z=
2 2

2.56 2.87 0.31 0.31 2.46
0.1260.016(1.08) (1.28)

150 200

  
   

 
 

 

 

Critical region: For a one tailed test, the critical value of Z at 5% level of significance is 1.645. The 
critical region for left-tailed test thus consist of all values of Z≤-1.645. 

Conclusion: Since calculated value of Z (-2.46) is less then critical value (-1.645), it is significant at 5% 
level of significant. Hence the null hypothesis rejected at 5% level of significant and we conclude that 
the average hourly wages paid by plant B are certainly higher than those paid by plant A. 

Problems: 

 (Problems based on all test of significance) 

1.  A sample of 900 members has a mean 3.4cms. and s.d 261cms. Is the sample from a large 
population of mean 3.25cms. and s.d. 2.61cms.?If the population is normal and its mean is 
unknown, find the 95% and 98% fiducial limits of true mean. 

2.  A survey is proposed to be conducted to know the annual earnings of the old statistics graduates of 
Delhi University. How large should the sample be taken in order to estimate the mean monthly 
earnings within plus and minus Rs. 10000 at 95% confidence level? The standard deviation of the 
annual earning of the entire population is known to be Rs. 30000. 

3.  In a survey of buying habits, 400 women shoppers are chosen at random in super market A located 
in certain section of the city. Their average weekly food expenditure is Rs.250 with a standard 
deviation of Rs.40. For 400 women shoppers chosen at random in super market B in other section 
of the city, the average weekly food expenditure is Rs. 220 with a standard deviation of Rs. 55test 
at 1% level of significance whether the average weekly food expenditure of the two populations of 
shoppers are equal. 

4.  In a sample of 1000 people in Maharashtra, 540 are rice eaters and the rest wheat eaters. Can we 
assume that both rice and wheat are equally popular in this state at 1% level of significance?   

5.  A die is thrown 900 times and a throw 3 or 4 is observed 3240 times. Show that the die cannot be 
regarded as an unbiased one and find the limits between which the probability of a thrown of 3 or 4 
lies. 

6.  In a year there are 956 births in a town A, of which 52.5% were males while if town A and B 
combined, this proportion in a total of 1406 births was 0.496. Is their any significant difference in 
the proportion of males birth in the two towns? 

7. In two large populations, there are 30 and 25 percent respectively of blue-eyed people. Is this 
difference likely to be hidden in samples of 1200 and 900 respectively from the two populations?                       

 


